Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 3.259 Facteur d'impact sur 5 ans: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2013005074
pages 541-554


Maliki Moustapha
Structural Engineering Department, EESC, University of Sao Paulo, Av. Trabalhador Saocarlense, 400, 13566-590 Sao Carlos, SP, Brazil
Andre T. Beck
Structural Engineering Department, EESC, University of São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP, Brazil
Jean-Marc Bourinet
SIGMA Clermont Campus des Cézeaux 27 rue Roche Genès - CS 20265 F-63178 Aubière Cedex, France


When cracks propagate under random loading, different realizations of the loading process lead to different histories of crack growth.Within all possible realizations of the random load process, the so-called design-point excitation represents that particular realization that most likely leads to failure (e.g. unstable crack growth). In this paper, the design-point excitation for random crack propagation is found under narrow-band load processes. The solution involves a spectral representation of the load process, rain-flow counting of the resulting stress ranges, crack growth computation by means of the Paris Law, and solution of a reliability problem by FORM (First Order Reliability Method). The FERUM software is used in the reliability analysis. The design-point excitation is shown to exist for narrow-band load processes. Some considerations are presented with respect to the form of this excitation. So far, no convergence has been obtained for broad-band processes.


  1. Virkler, D. A., Hillberry, B. M., and Goel, P. K., The statistical nature of fatigue crack propagation. DOI: 10.1115/1.3443666

  2. Lin, Y. K. and Yang, J. N., A stochastic theory of fatigue crack propagation. DOI: 10.2514/3.8879

  3. Yao, J. T. P., Kozin, F., Wen, Y. K., Schuller, G. I., and Ditlevsen, O., Stochastic fatigue, fracture and damage analysis. DOI: 10.1016/0167-4730(86)90005-6

  4. Ghonem, H. and Dore, S., Experimental study of the constant probability crack growth curves under constant amplitude loading. DOI: 10.1016/0013-7944(87)90002-6

  5. Provan, J., Probabilistic Fracture Mechanics and Reliability. DOI: 10.1007/978-94-017-2764-8

  6. Sobczyk, K. and Spencer, B. F., Random Fatigue: From Data to Theory.

  7. Beck, A. T. and Melchers, R. E., Overload failure of structural components under random crack propagation and loading—A random process approach. DOI: 10.1016/j.strusafe.2004.02.001

  8. Castillo, E., Fernández-Canteli, A., Castillo, C., and Mozos, C. M., A new probabilistic model for crack propagation under fatigue loads and its connection with Wöhler fields. DOI: 10.1016/j.ijfatigue.2009.10.011

  9. Leonel, E. D., Chateauneuf, A., Venturini, W. S., and Bressolette, P., Coupled reliability and boundary element model for probabilistic fatigue life assessment in mixed mode crack propagation. DOI: 10.1016/j.ijfatigue.2010.05.001

  10. Leonel, E. D. and Venturini, W. S., Multiple random crack propagation using a boundary element formulation. DOI: 10.1016/j.engfracmech.2010.11.012

  11. Leonel, E. D., Beck, A. T., and Venturini, W. S., On the performance of response surface and direct coupling approaches in solution of random crack propagation problems. DOI: 10.1016/j.strusafe.2011.04.001

  12. Wirsching, P. H. and Shehata, A. M., Fatigue under wideband random stresses using the rainflow method. DOI: 10.1115/1.3443520

  13. Nagode, M. and Fajdiga, M., A general multi-modal probability distribution function suitable for the rainflow ranges of stationary random processes. DOI: 10.1016/S0142-1123(97)00106-0

  14. Bouyssy, V., Naboishikov, S. M., and Rackwitz, R., Comparison of analytical counting methods for gaussian processes. DOI: 10.1016/0167-4730(93)90017-U

  15. Gupta, S. and Rychlik, I., Rain-flow fatigue damage due to nonlinear combination of vector Gaussian loads. DOI: 10.1016/j.probengmech.2007.04.003

  16. Bengtsson, A. and Rychlik, I., Uncertainty in fatigue life prediction of structures subject to Gaussian loads. DOI: 10.1016/j.probengmech.2008.06.004

  17. Sarkar, S., Gupta, S., and Rychlik, I., Wiener chaos expansions for estimating rain-flow fatigue damage in randomly vibrating structures with uncertain parameters. DOI: 10.1016/j.probengmech.2010.09.002

  18. Der Kiureghian, A., The geometry of random vibrations and solutions by FORM and SORM. DOI: 10.1016/S0266-8920(99)00011-9

  19. Loève, M., Probability Theory. DOI: 10.1007/978-1-4684-9464-8

  20. Sudret, B. and Der Kiureghian, A., Stochastic finite element methods and reliability: A state-of-the-art report.

  21. Wiener, N., The homogeneous chaos. DOI: 10.2307/2371268

  22. Askey, R. and Wilson, J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. DOI: 10.1090/memo/0319

  23. Xiu, D. and Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations. DOI: 10.1137/S1064827501387826

  24. Ghanem, R. G. and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach. DOI: 10.1007/978-1-4612-3094-6

  25. Grigoriu, M., A spectral representation based model for Monte Carlo simulation. DOI: 10.1016/S0266-8920(99)00038-7

  26. Paris, P. C. and Erdogan, F., A critical analysis of crack propagation laws. DOI: 10.1115/1.3656900

  27. Sendeckyj, G. P., Constant life diagrams—A historical review. DOI: 10.1016/S0142-1123(00)00077-3

  28. ASTM, Standard practices for cycle fatigue counting in fatigue analysis. DOI: 10.1520/E1049-85R11E01

  29. Nespurek, L., Bourinet, J.-M., Gravouil, A., and Lemaire, M., Some approaches to improve the computational efficiency of the reliability analysis of complex crack propagation problem.

  30. Bourinet, J.-M. and Lemaire, M., Form sensitivities to correlation: Application to fatigue crack propagation based on virkler data.

  31. Ang, A. H.-S. and Tang, W. H., Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering.

  32. Melchers, R. E., Structural Reliability Analysis and Prediction.

  33. Der Kiureghian, A. and Dakessian, T., Multiple design points in first and second-order reliability. DOI: 10.1016/S0167-4730(97)00026-X

  34. Liu, P. L. and Der Kiureghian, A., Optimization algorithms for structural reliability. DOI: 10.1016/0167-4730(91)90041-7

  35. Ferum software, <a href="http://www.ifma.fr/FERUM">http://www.ifma.fr/FERUM</a>.

  36. Schittkowski, K., On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. DOI: 10.1080/02331938308842847