Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 3.259 Facteur d'impact sur 5 ans: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2012004074
pages 397-412

INTERACTIVE VISUALIZATION OF PROBABILITY AND CUMULATIVE DENSITY FUNCTIONS

Kristin Potter
NREL
Mike Kirby
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, 84112, USA
Dongbin Xiu
Ohio Eminent Scholar Department of Mathematics The Ohio State University Columbus, Ohio 43210, USA
Chris R. Johnson
Scientific Computing and Imaging Institute, School of Computing University of Utah Salt Lake City, Utah 84112, USA

RÉSUMÉ

The probability density function (PDF), and its corresponding cumulative density function (CDF), provide direct statistical insight into the characterization of a random process or field. Typically displayed as a histogram, one can infer probabilities of the occurrence of particular events. When examining a field over some two-dimensional domain in which at each point a PDF of the function values is available, it is challenging to assess the global (stochastic) features present within the field. In this paper, we present a visualization system that allows the user to examine two-dimensional data sets in which PDF (or CDF) information is available at any position within the domain. The tool provides a contour display showing the normed difference between the PDFs and an ansatz PDF selected by the user and, furthermore, allows the user to interactively examine the PDF at any particular position. Canonical examples of the tool are provided to help guide the reader into the mapping of stochastic information to visual cues along with a description of the use of the tool for examining data generated from an uncertainty quantification exercise accomplished within the field of electrophysiology.


Articles with similar content:

CONSTRUCTION OF EVIDENCE BODIES FROM UNCERTAIN OBSERVATIONS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 2
Longyuan Xiao, Zhanping Yang, Liang Zhao
A NONSTATIONARY COVARIANCE FUNCTION MODEL FOR SPATIAL UNCERTAINTIES IN ELECTROSTATICALLY ACTUATED MICROSYSTEMS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 2
Narayana R. Aluru, Aravind Alwan
APPROXIMATE LEVEL-CROSSING PROBABILITIES FOR INTERACTIVE VISUALIZATION OF UNCERTAIN ISOCONTOURS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 2
Christoph Petz, Hans-Christian Hege, Kai Poethkow
CORRELATION VISUALIZATION FOR STRUCTURAL UNCERTAINTY ANALYSIS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 2
Rudiger Westermann, Tobias Pfaffelmoser
ADAPTIVE SAMPLING WITH TOPOLOGICAL SCORES
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 2
Dan Maljovec, Valerio Pascucci, Bei Wang, Ana Kupresanin, Gardar Johannesson, Peer-Timo Bremer