Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 4.911 Facteur d'impact sur 5 ans: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i1.10
pages 1-17

MARGINALIZATION OF UNINTERESTING DISTRIBUTED PARAMETERS IN INVERSE PROBLEMS-APPLICATION TO DIFFUSE OPTICAL TOMOGRAPHY

Ville Kolehmainen
Department of Applied Physics University of Kuopio P.O.B. 1627, FI-70211 Kuopio, Finland
Tanja Tarvainen
Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Simon R. Arridge
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
Jari P. Kaipio
Department of Mathematics, University of Auckland, New Zealand; and Department of Physics and Mathematics, University of Eastern Finland

RÉSUMÉ

With inverse problems there are often several unknown distributed parameters of which only one may be of interest. Since assigning incorrect fixed values to the uninteresting parameters usually leads to a severely erroneous model, one is forced to estimate all distributed parameters simultaneously. This may increase the computational complexity of the problem significantly. In the Bayesian framework, all unknowns are generally treated as random variables and estimated simultaneously and all uncertainties can be modeled systematically. Recently, the approximation error approach has been proposed for handling uncertainty and model-reduction-related errors in the models. In this approach approximate marginalization of these errors is carried out before the estimation of the interesting variables. In this paper we discuss the adaptation of the approximation error approach to the marginalization of uninteresting distributed parameters. As an example, we consider the marginalization of scattering coefficient in diffuse optical tomography.


Articles with similar content:

A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 1
Ajay Jasra, Yan Zhou, Kengo Kamatani, Kody J.H. Law
BAYESIAN APPROACH TO THE STATISTICAL INVERSE PROBLEM OF SCATTEROMETRY: COMPARISON OF THREE SURROGATE MODELS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 6
Markus Bar, Sebastian Heidenreich, Hermann Gross
COMPARATIVE STUDY OF DIFFERENT EIGENFUNCTION BASED APPROACHES FOR 1D MULTILAYER HEAT CONDUCTION PROBLEM WITH TIME DEPENDENT BOUNDARY CONDITIONS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Pranay Biswas, Suneet Singh
Identification of Statistical Parameters in one Model of Conditional Independence
Journal of Automation and Information Sciences, Vol.31, 1999, issue 1-3
M. I. Shlezinger
Solving Inverse Boundary Heat Conduction Problems for Compound Pivot
Journal of Automation and Information Sciences, Vol.39, 2007, issue 4
Ivan V. Sergienko, Vasiliy S. Deineka