Abonnement à la biblothèque: Guest
International Journal for Uncertainty Quantification

Publication de 6  numéros par an

ISSN Imprimer: 2152-5080

ISSN En ligne: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

A POSTERIORI ERROR ESTIMATION FOR A CUT CELL FINITE VOLUME METHOD WITH UNCERTAIN INTERFACE LOCATION

Volume 5, Numéro 5, 2015, pp. 415-432
DOI: 10.1615/Int.J.UncertaintyQuantification.2015012533
Get accessDownload

RÉSUMÉ

We study a simple diffusive process in which the diffusivity is discontinuous across an interface interior to the domain. In many situations, the location of the interface is measured at a small number of locations and these measurements contain error. Thus the location of the interface and the solution itself are subject to uncertainty. Further, the location of the interface may have a strong impact on the accuracy of the solution. A Monte Carlo approach is employed which requires solving a large number of sample problems, each with a different interface location. To solve these problems, a mixed finite element cut-cell method has been developed that does not require the mesh to conform to the interface. An efficient adjoint-based a posteriori technique is used to estimate the error in a quantity of interest for each sample problem. This error has a component due to the numerical approximation of the diffusive process and a component arising from the uncertainty in the interface location. A recognition of these separate sources of error is necessary in order to construct effective adaptivity strategies.

CITÉ PAR
  1. Chaudhry Jehanzeb H., Estep Donald, Tavener Simon J., A posteriori error analysis for Schwarz overlapping domain decomposition methods, BIT Numerical Mathematics, 61, 4, 2021. Crossref

  2. Reshniak Viktor, Melnikov Yuri, Method of Green’s Potentials for Elliptic PDEs in Domains with Random Apertures, Journal of Scientific Computing, 84, 3, 2020. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain