Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 3.259 Facteur d'impact sur 5 ans: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015010171
pages 255-273

STOCHASTIC GALERKIN METHODS AND MODEL ORDER REDUCTION FOR LINEAR DYNAMICAL SYSTEMS

Roland Pulch
Department of Mathematics and Computer Science University of Greifswald Domstraße 11, 17489 Greifswald, Germany
E. Jan W. ter Maten
Centre for Analysis, Scientific computing and Applications (CASA), Dept. Mathematics & Computer Science, Technische Universiteit Eindhoven, P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands; Bergische Universitat Wuppertal, D-42119 Wuppertal, Germany

RÉSUMÉ

Linear dynamical systems are considered in the form of ordinary differential equations or differential algebraic equations. We change their physical parameters into random variables to represent uncertainties. A stochastic Galerkin method yields a larger linear dynamical system satisfied by an approximation of the random processes. If the original systems own a high dimensionality, then a model order reduction is required to decrease the complexity. We investigate two approaches: the system of the stochastic Galerkin scheme is reduced and, vice versa, the original systems are reduced followed by an application of the stochastic Galerkin method. The properties are analyzed in case of reductions based on moment matching with the Arnoldi algorithm. We present numerical computations for two test examples.


Articles with similar content:

ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 1
Raymond S. Tuminaro, Eric T. Phipps, Christopher W. Miller, Howard C. Elman
Toward a Nonintrusive Stochastic Multiscale Design System for Composite Materials
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 6
Jacob Fish, Wei Wu
Multiscale Discontinuous Galerkin and Operator-Splitting Methods for Modeling Subsurface Flow and Transport
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 1
Juergen Geiser, Shuyu Sun
ANALYSIS OF VARIANCE-BASED MIXED MULTISCALE FINITE ELEMENT METHOD AND APPLICATIONS IN STOCHASTIC TWO-PHASE FLOWS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 6
Guang Lin, Yalchin Efendiev, Lijian Jiang, Jia Wei
BIAS MINIMIZATION IN GAUSSIAN PROCESS SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 4
Vadiraj Hombal, Sankaran Mahadevan