Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Uncertainty Quantification
Facteur d'impact: 4.911 Facteur d'impact sur 5 ans: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Imprimer: 2152-5080
ISSN En ligne: 2152-5099

Ouvrir l'accès

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015010171
pages 255-273

STOCHASTIC GALERKIN METHODS AND MODEL ORDER REDUCTION FOR LINEAR DYNAMICAL SYSTEMS

Roland Pulch
Institute for Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, D-17489 Greifswald, Germany
E. Jan W. ter Maten
Centre for Analysis, Scientific computing and Applications (CASA), Dept. Mathematics & Computer Science, Technische Universiteit Eindhoven, P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands; Bergische Universitat Wuppertal, D-42119 Wuppertal, Germany

RÉSUMÉ

Linear dynamical systems are considered in the form of ordinary differential equations or differential algebraic equations. We change their physical parameters into random variables to represent uncertainties. A stochastic Galerkin method yields a larger linear dynamical system satisfied by an approximation of the random processes. If the original systems own a high dimensionality, then a model order reduction is required to decrease the complexity. We investigate two approaches: the system of the stochastic Galerkin scheme is reduced and, vice versa, the original systems are reduced followed by an application of the stochastic Galerkin method. The properties are analyzed in case of reductions based on moment matching with the Arnoldi algorithm. We present numerical computations for two test examples.


Articles with similar content:

POLYNOMIAL CHAOS FOR SEMIEXPLICIT DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX 1
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Roland Pulch
NUMERICAL SOLUTIONS FOR FORWARD BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS AND ZAKAI EQUATIONS
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 4
Feng Bao, Yanzhao Cao, Weidong Zhao
VARIANCE REDUCTION METHODS AND MULTILEVEL MONTE CARLO STRATEGY FOR ESTIMATING DENSITIES OF SOLUTIONS TO RANDOM SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS
International Journal for Uncertainty Quantification, Vol.10, 2020, issue 5
Marc Jornet , Julia Calatayud, Juan Carlos Cortés, Olivier P. Le Maître
A STOPPING CRITERION FOR ITERATIVE SOLUTION OF STOCHASTIC GALERKIN MATRIX EQUATIONS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 3
Christophe Audouze , Pär Håkansson, Prasanth B. Nair
BLOCK AND MULTILEVEL PRECONDITIONING FOR STOCHASTIC GALERKIN PROBLEMS WITH LOGNORMALLY DISTRIBUTED PARAMETERS AND TENSOR PRODUCT POLYNOMIALS
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 5
Ivana Pultarová