Abonnement à la biblothèque: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Publication de 4  numéros par an

ISSN Imprimer: 1093-3611

ISSN En ligne: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

EFFECT OF PRESSURE ON THERMODYNAMIC PROPERTIES OF CH4 THERMAL PLASMAS MIXED WITH H2

Volume 23, Numéro 4, 2019, pp. 365-376
DOI: 10.1615/HighTempMatProc.2020032931
Get accessGet access

RÉSUMÉ

Thermodynamic properties at high temperature in gases and/or in plasmas are very important in various fields, namely, in the field of breaking technology in arc, cutting plasma, welding or burning. Knowledge of thermodynamic coefficients is necessary for any modeling involving hydrodynamic equations. This paper is devoted to the calculation of thermodynamic properties of equilibrium compositions: mass density, enthalpy, and specific heat of methane (CH4) thermal plasmas mixed with hydrogen (H2). These data are computed in the temperature range 300−30,000 K and at various pressures (0.1-24) atm. The general results show that the infuence of the methane presence on the thermodynamic properties can be important in this temperature range.

RÉFÉRENCES
  1. Ailas, S., Etude du Spectre Moleculaire Emispar un Plasma Thermique Forme De Melange CH4-H2, PhD, University Tlemcen, Tlemcen, Algeria, 2017.

  2. Ailas, S., Liani, B., and Ferouani, A.K., Effect of Molecules in Radiative Emission from the Thermal Plasmas of CH4-H2 Mixtures, High Temp. Mat. Proc.: An Int. Quart. High-Tech. Plasma Proc., vol. 20, pp. 279-294,2016.

  3. Andre, P. and Koalaga, Z., Composition of a Thermal Plasma Formed from PTFE with Copper in Non-Oxidant Atmosphere. Part I: Definition of a Test Case with the SF6, High Temp. Mat. Proc.: An Int. Quart. High-Tech. Plasma Proc, vol. 14, no. 3, pp. 285-294,2010.

  4. Babou, Y., Transferts Radiatifs Dans Les Plasmas De Melanges CO2-N2: Base De Donnees Spectro-scopiques, Etude Experimental et Application Aux Rentrees Atmospheriques, PhD, University Paris Sud, Paris, France, 2007.

  5. Bacri, J. and Raffanel, S., Calculation of Some Thermodynamic Properties of Air Plasmas: Internal Partition Functions, Plasma Composition, and Thermodynamic Functions, Plasma Chem. Plasma Proc., vol. 7, no. 1,pp. 53-87,1987.

  6. Boulos, M.I., Fauchais, P., and Pfender, E., Thermal Plasmas Fundamentals and Applications, vol. 1, New York, NY: Springer Science and Business Media, 1994.

  7. Chapman, S., Cowling, T.G., and Burnett, D., The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge, UK: Cambridge University Press, 1990.

  8. Chase, M.W., Davies, C.A., Downey, J.R., Jr., Frurip, D.J., and McDonald, R.A., JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data., vol. 14, suppl. 1, 3rd ed., 1985.

  9. Chervy, B., Gleizes, A., and Razafinimanana, M., Thermodynamic Properties and Transport Coefficients in SF6-Cu Mixtures at Temperatures of 300-30,000 K and Pressures of 0.1-1 MPa., J. Phys. D: Appl. Phys, vol. 27, no. 6, pp. 1193-1206,1994.

  10. Chervy, B., Riad, H., and Gleizes, A., Calculation of the Interruption Capability of SF/sub 6/-CF/sub4/and SF/sub6/-C/sub2/F/sub6/Mixtures. I. Plasma Properties., IEEE Trans. Plasma Sci., vol. 24, no. 1, pp. 198-209,1996.

  11. Cressault, Y. and Gleizes, A., Thermal Plasma Properties for Ar-Al, Ar-Fe, and Ar-Cu Mixtures Used in Welding Plasmas Processes: I. Net Emission Coefficients at Atmospheric Pressure, J. Phys. D: Appl. Phys., vol. 46, p. 415206,2013.

  12. Cressault, Y. and Gleizes, A., Thermodynamic Properties and Transport Coefficients in Ar-H2-Cu Plasmas, J. Phys. D: Appl. Phys, vol. 37, no. 4, pp. 560-572,2004.

  13. Derkaoui, N., Rond, C., Gries, T., Henrion, G., and Gicquel, A., Determining Electron Temperature and Electron Density in Moderate Pressure H2/CH4 Microwave Plasm, J. Phys. D: Appl. Phys, vol. 47, no. 20, p. 205201,2014.

  14. Drawin, H.W. and Emard, F., Optical Escape Factors for Bound-Bound and Free-Bound Radiation from Plasmas. I. Constant Source Function, Beitr. Plasma. Phys, vol. 13, pp. 143-168,1973.

  15. Dunham, J.L., The Energy Levels of a Rotating Vibrator, Phys. Rev, vol. 41, no. 6, pp. 721-731,1932.

  16. Fan, W.Y., Knewstubb, P.F., Kaning, M.L., Mechold, L., Ropcke, J., and Davies, P.B., A Diode Laser and Modeling Study of Mixed (CH4-H2-O2) AC Plasmas, J. Phys. Chem. A., vol. 103, no. 20, pp. 4118-4128,1999.

  17. Gleizes, A., Gonzalez, J.J., and Freton, P., Thermal Plasma Modelling, J. Phys. D: Appl. Phys., vol. 38, no. 9, R153,2005.

  18. Gleizes, A., Gonzalez, J.J., Liani, B., and Raynal, G., Calculation of Net Emission Coefficient of Thermal Plasmas in Mixtures of Gas with Metallic Vapor, J. Phys. D: Appl. Phys, vol. 26, no. 11, pp. 1921-1927, 1993.

  19. Godin, D. and Trepanier, J.Y., A Robust and Efficient Method for the Computation of Equilibrium Composition in Gaseous Mixtures, Plasma Chem. Plasma Proc., vol. 24, pp. 447-473,2004.

  20. Guarino, G., DiCristofaro, F., Carotenuto, C., Morrone, B., and Minale, M., Effect of Thermal and Mechanical Pre-Treatments on the CH4-H2 Production from Water Buffalo Manure in Different Process Conditions, Chem. Eng. Trans., vol. 38, pp. 205-210,2014.

  21. Gurvich, L.V., Veyts, L.V., and Alcock, E.B., Thermodynamic Properties of Individual Substances, vol. 1, Parts 1 and 2, 4th ed., New York, NY: Hemisphere Publishing Corp., 1989.

  22. Hayes, T.R., Dreisbach, M.A., Thomas, P.M., Dautremont-Smith, W.C., and Heimbrook, L.A., Reactive Ion Etching of InP Using CH4/H2 Mixtures: Mechanisms of Etching and Anisotropy, J. Vacuum Sci. Tech. B, vol. 7, no. 5, pp. 1130-1140,1989.

  23. Herzberg, G., Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, New York, NY: Van-Nostrand-Reinhold, 1950.

  24. Hirschfelder, J.O., Curtis, C.F., and Byron, B.R., Molecular Theory of Gases and Liquids, New York, NY: Wiley, 1964.

  25. Kovacs, I., Rotational Structure in the Spectra of Diatomic Molecules, London, UK: Adam Hilger Ltd., 1969.

  26. Kovitya, P., Physical Properties of High-Pressure Plasmas of Hydrogen and Copper in the Temperature Range 5000-60,000K, IEEE Trans. Plasma Sci., vol. 13, no. 6, pp. 587-594,1985.

  27. Kuznetsova, L. and Surzhikov, S., Absorption Cross Sections of Diatomic Molecules for Problems of Radiative Heat Transfer in Low-Temperature Plasma, High Temp, vol. 37, no. 3, pp. 374-385,1999.

  28. Liani, B., Rahmouni, M., Belbachir, A.H., Riad, H., and Gleizes, A., Computation of Net Emission Of-Thermal Plasmas, J. Phys. D: Appl. Phys, vol. 30, no. 21, pp. 2964-2971,1997.

  29. Manasreh, M.O., InP and Related Compounds: Materials, Applications and Devices. Optoelectronic Properties ofSemiconductors and Superlattices, Boca Raton, FL: CRC Press, 2000.

  30. McBride, B.J. and Gordon, S., Computer Program for Calculating and Fitting Thermodynamic Functions, Washington, DC: NASA, RP-1271, p. 92,1992.

  31. McBride, B.J., Zehe, M.J., and Gordon, S., NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, Glenn Research Center, Cleveland, Ohio, NASA Rep., p. 286,2002.

  32. Murphy, A.B., Thermal Plasmas in Gas Mixtures, J. Phys. D: Appl. Phys., vol. 34, R151,2001.

  33. Pateyron, B., Elchinger, M.F., Delluc, G., and Fauchais, P., Thermodynamic and Transport Properties of Ar-H2 and Ar-He Plasma Gases Used for Spraying at Atmospheric Pressure. I: Properties of the Mixtures, Plasma Chem. Plasma Proc, vol. 12, no. 4, pp. 421-448,1992.

  34. Sharma, S. andGhoshal, S.K., Hydrogen the Future Transportation Fuel: From Production to Applications, Renew. Sustain. Energy Rev., vol. 43,pp. 1151-1158,2015.

  35. Wang, W.Z., Murphy, A.B., Yan, J.D., Rong, M.Z., Spencer, J.W., and Fang, M.T.C., Thermophysical Properties of High-Temperature Reacting Mixtures of Carbon and Water in the Range 400-30,000 K and 0.1-10 Atm. Part 1: Equilibrium Composition and Thermodynamic Properties, Plasma Chem. Plasma Proc, vol. 32, no. 1, pp. 75-96,2012.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain