Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Plasma Medicine
SJR: 0.278 SNIP: 0.183 CiteScore™: 0.57

ISSN Imprimer: 1947-5764
ISSN En ligne: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2019029026
pages 49-55

Chemistry of Air, N2, and O2 Reverse Vortex Gliding Arc Plasma System

Zhengduo Wang
C&J Nyheim Plasma Institute, Drexel University, Camden, NJ; Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Daxing, Beijing, China
Qiang Chen
Laboratory of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, Daxing, Beijing, China
Yen Wei
Department of Chemistry, Tsinghua University, Beijing, China
Alexander A. Fridman
C&J Nyheim Plasma Institute, Drexel University, Camden, New Jersey 08103
Gregory Fridman
C&J Nyheim Plasma Institute, Drexel University, Camden, New Jersey 08103
Hai-Feng Ji
Department of Chemistry, Drexel University, Philadelphia, Pennsylvania, USA


Reactive oxygen species and nitrogen species are generated after water is treated with room temperature nonthermal plasma, generated by a reverse-vortex gliding arc discharge (GAD) plasmatron. In this short communication, we have investigated the chemical species in water treated with GAD plasma with a pH meter and UV spectroscopy.


  1. Hwang I, Jeong J, You T, Jung J. Water electrode plasma discharge to enhance the bacterial inactivation in water. Biotechnol Biotechnol Equip. 2018;32(2):530-534.

  2. Wandell RJ, Wang H, Tachibana K, Makled B, Locke BR. Nanosecond pulsed plasma discharge over a flowing water film: Characterization of hydrodynamics, electrical, and plasma properties and their effect onhydrogenperoxide generation. PlasmaProcess Polym. 2018;15(6):1800008.

  3. Lu P, Boehm D, Bourke P, Cullen PJ. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process Polym. 2017;14(8):1600207.

  4. Heo YK, Lee SH, Bratescu MA, Kim SM, Lee GJ, Saito N. Generation of non-equilibrium condition in solution plasma discharge using low-pass filter circuit. Plasma Process Polym. 2017;14(8): 1600163.

  5. Ceriani E, Marotta E, Schiorlin M, Ren X, Ceretta C, Gobbo R, Tampieri F, Paradisi C. A versatile prototype plasma reactor for water treatment supporting different discharge regimes. J Phys D: Appl Phys. 2018;51(27):274001.

  6. Zhang Z, Xu Z, Cheng C, Wei J, Lan Y, Ni G, Sun Q, Qian S, Zhang H, Xia W, Shen J, Meng Y, Chu PK. Bactericidal effects of plasma induced reactive species in dielectric barrier gas-liquid discharge. Plasma Chem Plasma Process. 2017;37(2):415-431.

  7. Foster JE. Plasma-based water purification: challenges and prospects for the future. Phys Plasmas. 2017;24(5):055501.

  8. Smith JB, Adams I, Ji H-F. Mechanism of ampicillin degradation by non-thermal plasma treatment with fe-dbd. Plasma. 2017;1(1):1.

  9. Smith JB, Adams I, Ji H-F. Biomolecule response to nonthermal plasma. Plasma Med. 2017;7(4).

  10. Li Y, Kojtari A, Friedman G, Brooks AD, Fridman A, Ji H-F. Decomposition of l-valine under non-thermal dielectric barrier discharge plasma. J Phys Chem B. 2014;118(6):1612-1620.

  11. Li Y, Kojtari A, Friedman G, Brooks AD, Fridman A, Joshi SG, Ji, H-F. Oxidation of N-acetylcysteine (NAC) under nanosecond-pulsed nonthermal dielectric barrier discharge plasma. Plasma Med. 2016;6(3-4).

  12. Ayan H. Uniform dielectric barrier discharge with nanosecond pulse excitation for biomedical applications. 2009.

  13. Robinson RD, Gutsol K, Rabinovich A, Fridman AA. Plasma acid production in a gliding arc plasmatron. 2012;2(4):249-258.

  14. Kim H-S, Wright KC, Hwang I-W, Lee D-H, Rabinovich A, Fridman A, Cho YI. Concentration of hydrogen peroxide generated by gliding arc discharge and inactivation of E. coli in water. Int Com- mun Heat Mass Transfer. 2013;42:5-10.

  15. Kim HS, Cho YI, Hwang IH, Lee DH, Cho DJ, Rabinovich A, Fridman A. Use of plasma gliding arc discharges on the inactivation ofE. coli in water. Separation Purification Technol. 2013;120:423-428.

  16. Nunnally T, Tsangaris A, Rabinovich A, Nirenberg G, Chernets I, Fridman A. Gliding arc plasma oxidative steam reforming of a simulated syngas containing naphthalene and toluene. Int J Hydrogen Energy. 2014;39(23):11976-11989.

  17. Gutsol K, Robinson R, Rabinovich A, Gutsol A, Fridman A. High conversion ofhydrogen sulfide in gliding arc plasmatron. Int J Hydrogen Energy. 2016;42(1):68-75.

  18. Brar J, Jiang J, Oubarri A, Ranieri P, Fridman AA, Fridman G, Miller V, Peethambaran B. Nonthermal plasma treatment of flowing water: a solution to reduce water usage and soil treatment cost without compromising yield. Plasma Med. 2016;6(3-4).

  19. Anastasio C, Chu L. Photochemistry of nitrous acid (HONO) and nitrous acidium ion (H2ONO+) in aqueous solution and ice. Environ Sci Technol. 2009;43(4):1108-1114.

  20. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB. Long-term antibacterial efficacy ofairplasma-activatedwater. JPhys D: ApplPhys. 2011;44(47):472001.

  21. Riordan E, Minogue N, Healy D, O'Driscol P, Sodeau JR. Spectroscopic and optimization modeling study of nitrous acid in aqueous solution. J Phys Chem A. 2005;109(5):779-786.

  22. Bielski BH, Cabelli DE, Arudi RL, Ross AB. Reactivity of HO2/O-2 radicals in aqueous solution. J Phys Chem Ref Data. 1985;14(4):1041-1100.