Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Plasma Medicine
SJR: 0.198 SNIP: 0.183 CiteScore™: 0.57

ISSN Imprimer: 1947-5764
ISSN En ligne: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2018028325
pages 269-277

Limiting Pseudomonas aeruginosa Biofilm Formation Using Cold Atmospheric Pressure Plasma

Bethany L. Patenall
Department of Chemistry, University of Bath, UK
Hollie Hathaway
Department of Chemistry, Lancaster University, UK
Adam C. Sedgwick
Department of Chemistry, University of Bath, UK
Naing T. Thet
Department of Chemistry, University of Bath, UK
George T. Williams
Department of Chemistry, University of Bath, UK
Amber E. Young
The Scar Free Foundation Centre for Children's Burns Research, The Bristol Royal Hospital for Children, Bristol, UK
Sarah L. Allinson
Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
Robert D. Short
Department of Chemistry, Lancaster University, UK
Andrew Toby A. Jenkins
Department of Chemistry, University of Bath, UK


We investigate the ability to disrupt and limit growth biofilms of Pseudomonas aeruginosa using application of cold atmospheric pressure (CAP) plasma. The effect of the bio-film's exposure to a helium (CAP) jet was assessed at varying time points during biofilm maturation. Results showed that the amount of time during biofilm growth that CAP pressure was applied has a crucial role on the ability of biofilms to mature and recover after CAP exposure. Intervention during the early stages of biofilm formation (0-8 h) results in a 4-5-log reduction in viable bacterial cells (measured at 24 h of incubation) relative to untreated biofilms. However, CAP treatment of biofilm at 12 h and above only results in a 2-log reduction in viable cells. This has potentially important implications for future clinical application of CAP to treat infected wounds.

Articles with similar content:

Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Pseudomonas aeruginosa Biofilm Eradication
Plasma Medicine, Vol.7, 2017, issue 1
Diana Grondona, Leandro Giuliani, Juliana Soler-Arango, Magali Xaubet, Graciela Brelles-Mariño
Nonthermal Atmospheric Pressure Plasma Decontamination of Protein-Loaded Biodegradable Nanoparticles for Nervous Tissue Repair
Plasma Medicine, Vol.1, 2011, issue 3-4
Gregory Fridman, Jason Coleman, Anthony Lowman, Ross Goren, Adam Yost
Broccoli: Antimicrobial Efficacy and Influences to Sensory and Storage Properties by Microwave Plasma-Processed Air Treatment
Plasma Medicine, Vol.6, 2016, issue 3-4
Mathias Andrasch, Oliver Schlüter, Marion Jakobs, Kai-Uwe Katroschan, Uta Schnabel, Rijana Niquet, Klaus-Dieter Weltmann, Jörg Ehlbeck
MET, HGF, EGFR, and PXN Gene Copy Number in Lung Cancer Using DNA Extracts from FFPE Archival Samples and Prognostic Significance
Journal of Environmental Pathology, Toxicology and Oncology, Vol.28, 2009, issue 2
Soheil Yala, Rajani Kanteti, Ravi Salgia, Mark K. Ferguson
Plasma Sterilization of Root Canal Abscess
Plasma Medicine, Vol.8, 2018, issue 3
Gregory Fridman, Yuyuan Zhou, Mykola Kovalenko, Gary Nirenberg, Alexander A. Fridman, Anh Huynh