Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Plasma Medicine
SJR: 0.271 SNIP: 0.316 CiteScore™: 1.9

ISSN Imprimer: 1947-5764
ISSN En ligne: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2018028325
pages 269-277

Limiting Pseudomonas aeruginosa Biofilm Formation Using Cold Atmospheric Pressure Plasma

Bethany L. Patenall
Department of Chemistry, University of Bath, UK
Hollie Hathaway
Department of Chemistry, Lancaster University, UK
Adam C. Sedgwick
Department of Chemistry, University of Bath, UK
Naing T. Thet
Department of Chemistry, University of Bath, UK
George T. Williams
Department of Chemistry, University of Bath, UK
Amber E. Young
The Scar Free Foundation Centre for Children's Burns Research, The Bristol Royal Hospital for Children, Bristol, UK
Sarah L. Allinson
Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
Robert D. Short
Department of Chemistry, Lancaster University, UK
Andrew Toby A. Jenkins
Department of Chemistry, University of Bath, UK

RÉSUMÉ

We investigate the ability to disrupt and limit growth biofilms of Pseudomonas aeruginosa using application of cold atmospheric pressure (CAP) plasma. The effect of the bio-film's exposure to a helium (CAP) jet was assessed at varying time points during biofilm maturation. Results showed that the amount of time during biofilm growth that CAP pressure was applied has a crucial role on the ability of biofilms to mature and recover after CAP exposure. Intervention during the early stages of biofilm formation (0-8 h) results in a 4-5-log reduction in viable bacterial cells (measured at 24 h of incubation) relative to untreated biofilms. However, CAP treatment of biofilm at 12 h and above only results in a 2-log reduction in viable cells. This has potentially important implications for future clinical application of CAP to treat infected wounds.


Articles with similar content:

Cold Plasma Sterilization of Open Wounds: Live Rat Model
Plasma Medicine, Vol.1, 2011, issue 2
Gregory Fridman, Danil Dobrynin, Kimberly Wasko, Alexander A. Fridman, Gary Friedman
A Pilot Study of Atmospheric Nonthermal Plasma Jet Application on Staphylococcus aureus and Staphylococcus epidermidis
Plasma Medicine, Vol.2, 2012, issue 4
Jilu Shen, Chunjun Yang, Cheng Cheng, Shengxiu Liu, Wenhui Du, Shi Chen, Longdan Liu, Shumei Zhang, Jing Gao, Jie Shen, Shenghai Huang
Repeated Cold Atmospheric Plasma Application to Intact Skin Does Not Cause Sensitization in a Standardized Murine Model
Plasma Medicine, Vol.7, 2017, issue 4
Claus-Dieter Heidecke, Julia van der Linde, Kim Rouven Liedtke, Axel Kramer, Lars Ivo Partecke, Rutger Matthes
Selectivity of Non-Thermal Atmospheric-Pressure Microsecond-Pulsed Dielectric Barrier Discharge Plasma Induced Apoptosis in Tumor Cells over Healthy Cells
Plasma Medicine, Vol.1, 2011, issue 3-4
Ekaterina Cerchar, Crystal Kelly, Sameer Kalghatgi, Jane Azizkhan-Clifford
Real-Time Monitoring of Intracellular Chemical Changes in Response to Plasma Irradiation
Plasma Medicine, Vol.7, 2017, issue 1
Aniruddha Ray, John Foster, Benjamin Yee, Pietro Ranieri, Raoul Kopelman, Leshern Karamchand