Abonnement à la biblothèque: Guest
Plasma Medicine

Publication de 4  numéros par an

ISSN Imprimer: 1947-5764

ISSN En ligne: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Comparative Study of the Influence of Helium and Argon Plasma on Crystallogenic Properties of the Blood

Volume 11, Numéro 1, 2021, pp. 69-79
DOI: 10.1615/PlasmaMed.2021038035
Get accessDownload

RÉSUMÉ

The aim of this study was to compare the biological effects of helium and argon plasma in vitro. The cold plasma was generated using a device developed at the Institute of Applied Physics of the Russian Academy of Sciences (Nizhny Novgorod), which uses the principle of microwave ionization of the gas flow. We studied the crystallogenic activity of blood plasma. The description of dehydrated blood plasma samples was performed morphologically, using a system of visuametric parameters. Main morphometric parameters for analysis of blood plasma crystallization include crystallizability, structure index, facia destruction degree, and size of marginal zone. This study allowed us to establish that the effect of helium and argon in both free and ionized forms on the crystallogenic activity of blood varies significantly. The effect of cold plasma in general should be described as more favorable relative to the corresponding nonionized fluxes. At the same time, the most optimal nature of the reaction of the biological fluid was recorded when using a helium cold plasma. A specific feature of the helium flow is the suppression of the crystallogenic activity of the biological fluid, and the argon flow leads to its increase. Ionization of gases optimizes the nature of their influence, moreover, according to the modeling effect, the helium cold plasma is closest to the control sample.

RÉFÉRENCES
  1. Alkawareek MY, Gorman SP, Graham WG, Gilmore BF. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int J Antimicrob Agents. 2014;43(2):154-60. doi: 10.1016/j.ijantimicag.2013.08.022.

  2. Dobrynin D, Fridman D, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys. 2009;11(11):115020. doi: 10.1088/1367-2630/11/11/115020.

  3. Laroussi M. Low-temperature plasmas for medicine? IEEE Trans Plasma Sci. 2009;37:714-25. doi: 10.1109/tps.2009.2017267.

  4. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma-a tool for decontamination and disinfection. Biotechnol Adv. 2015;33(6 Pt 2):1108-19. doi: 10.1016/j.biotechadv. 2015.01.002.

  5. Feng X, Ma X, Liu H, Xie J, He C, Fan R. Argon plasma effects on maize: Pesticide degradation and quality changes. J Sci Food Agric. 2019;99(12):5491-8. doi: 10.1002/jsfa.9810.

  6. Kim SY, Lee SY, Min SC. Improvement of the antioxidant activity, water solubility, and dispersion stability of prickly pear cactus fruit extracts using argon cold plasma treatment. J Food Sci. 2019;84(10):2876-82. doi: 10.1111/1750-3841.14791.

  7. Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, Hu J. Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma. 2019;256(1):79-99. doi: 10.1007/s00709-018-1279-0.

  8. Guo L, Xu R, Gou L, Liu Z, Zhao Y, Liu D, Zhang L, Chen H, Kong MG. Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water. Appl Environ Microbiol. 2018;84(17):e00726-18. doi: 10.1128/AEM.00726-18.

  9. Butscher D, Zimmermann D, Schuppler M, von Rohr PR. Plasma inactivation of bacterial endo spores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control. 2016;60:636-45. doi: 10.1016/j.foodcont.2015.09.003.

  10. Alshraiedeh NH, Higginbotham S, Flynn PB, Alkawareek MY, Tunney MM, Gorman SP, Graham WG, Gilmore BF. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma. Int J Antimicrob Agents. 2016;47(6):446-50. doi: 10.1016/j.ijantimicag.2016.03.004.

  11. Flynn PB, Busetti A, Wielogorska E. Chevallier OP, Elliott CT, Laverty G, Gorman SP, Graham WG, Gilmore BF. Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Sci Rep. 2016;6:26320. doi: 10.1038/srep26320.

  12. Schweigert I, Zakrevsky D, Gugin P, Yelak E, Golubitskaya E, Troitskaya O, Koval O. Interaction of cold atmospheric argon and helium plasma jets with bio-target with grounded substrate beneath. Appl Sci. 2019;9(21):4528. doi: 10.3390/app9214528.

  13. Jawaid P, Rehman MU, Zhao QL, Takeda K, Ishikawa K, Hori M, Shimizu T, Kondo T. Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles. J Cell Mol Med. 2016;20(9):1737-48. doi: 10.1111/jcmm.12880.

  14. Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A. Blood co-agulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26:425-42 doi: 10.1007/s11090-006-9024-4.

  15. Duske K, Wegner K, Donnert M, Kunert U, Podbielski A, Kreikemeyer B, Gerling T, Weltmann KD, Nebe B, Bader R. Comparative in vitro study of different atmospheric pressure plasma jets concerning their antimicrobial potential and cellular reaction. Plasma Process Polym. 2015;12(10):1050-60. doi: 10.1002/ppap.201400176.

  16. Winter T, Bernhardt J, Winter J, Mader U, Schluter R, Weltmann KD, Hecker M, Kusch H. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma. Proteomics. 2013;13(17):2608-21. doi: 10.1002/pmic.201200343.

  17. Chandana L, Sangeetha CJ, Shashidhar T, Subrahmanyam Ch. Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium. Sci Total Environ. 2018;640-1:493-500. doi: 10.1016/j.scitotenv.2018.05.342.

  18. Wende K, Williams P, Dalluge J, Gaens WV, Aboubakr H, Bischof J, von Woedtke T, Goyal SM, Weltmann KD, Bogaerts A, Masur K, Bruggeman PJ. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases. 2015;10(2):029518. doi: 10.1116/1.4919710.

  19. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL. Plasma medicine: An introductory review. New J Phys. 2009;11:115012. doi: 10.1088/1367-2630/11/11/115012.

  20. Aboubakr HA, Mor SK, Higgins L, Armien A, Youssef MM, Bruggeman PJ, Goyal SM. Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus. PLoS One. 2018;13(3):e0194618. doi: 10.1371/journal.pone.0194618.

  21. Martusevich AK, Galka AG, Karuzin KA, Tuzhilkin AN, Malinovskaya SL. Cold helium plasma as a modifier of free radical processes in the blood: In vitro study. AIMS Biophys. 2021;8(1):34-40. doi: 10.3934/biophy.2021002.

  22. Martusevich AK, Kovaleva LK, Davyduk AV. Nitric oxide modulation of the crystallogenic properties of a biological fluid. Biophysics. 2016:61(2):291-6. doi: 10.1134/s0006350916020081.

  23. Martusevich AK, Peretyagin SP. Modification of blood plasma crystallogenesis with nitrogen oxide processing. Biophysics. 2013;58(5):816-9. doi: 10.1134/s0006350913060134.

  24. Rapis EG. Self-organization and supramolecular chemistry of protein films from the nano-to the macroscale. Tech Phys. 2004;49:494-8. doi: 10.1134/1.1736921.

  25. Stoffels E, Sakiyama Y, Graves DB. Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci. 2008;36:1441-57. doi: 10.1109/tps.2008.2001084.

  26. Martusevich AK, Galka AG, Golygina ES. Modifying the blood's physical and chemical parameters using cold helium plasma: In vitro study. Plasma Med. 2020;10(2):113-22. doi: 10.1615/ PlasmaMed.2020036212.

  27. Ikehara Y, Sakakita H, Shimizu N, Ikehara S, Nakanish H. Formation of membrane-like structures in clotted blood by mild plasma treatment during hemostasis. J Photopol Sci Technol. 2013;26:555-7. doi: 10.2494/photopolymer.26.555.

CITÉ PAR
  1. Martusevich A. K., Golygina E. S., Bocharin I. V., Karuzin K. A., Didenko N. V., Nazarov V. V., Experimental Evaluation of the Effect of Argon Cold Plasma on Oxidative Metabolism of the Blood, Bulletin of Experimental Biology and Medicine, 172, 5, 2022. Crossref

  2. Martusevich Andrew K., Surovegina Alexandra V., Bocharin Ivan V., Nazarov Vladimir V., Minenko Inessa A., Artamonov Mikhail Yu., Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities, Antioxidants, 11, 7, 2022. Crossref

  3. Widjaja G., Younus L. A., Abdelbasset W. K., Ibragimov D. D., Yumashev A. V., Shalaby M. N., Mustafa Y. F., Fardeeva I., Chemical and physical features of biological fluids in treatment of hydatid disease, Brazilian Journal of Biology, 84, 2024. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain