Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i6.30
pages 509-522

Some Issues Related to the Use of Immersed Boundary Methods to Represent Square Obstacles

M.B.J.M. Pourquie
Laboratory for Aero- and Hydrodynamics, Department of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 21, 2628CA Delft, The Netherlands
Wim-Paul Breugem
Laboratory for Aero- and Hydrodynamics, Department of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 21, 2628CA Delft, The Netherlands
Bendiks Jan Boersma
Department of mechanical engineering Delft University of Technology Leeghwaterstraat 44, 2628 CA Delft, The Netherlands

RÉSUMÉ

Three aspects of immersed boundary methods are studied, namely, the influence of the region inside an obstacle on the flow outside the obstacle, the possibility to calculate local surface fluxes, and the numerical stability when compared to standard body-fitted methods.

RÉFÉRENCES

  1. Mittal, R., and Iaccarino, G., Immersed Boundary Methods. DOI: 10.1146/annurev.fluid.37.061903.175743

  2. Pourquie, M., and Nieuwstadt, F., The Use of Virtual Boundary Conditions for Fast DNS/LES of Flow around Objects.

  3. Breugem, W. P., and Boersma, B. J., Direct Numerical Simulations of Turbulent Flow over a Permeable Wall Using a Direct and a Continuum Approach. DOI: 10.1063/1.1835771

  4. Verstappen, R. W. C. P., and Veldman, A. E. P, Spectro-Consistent Discretization of Navier Stokes: A Challenge to RANS and LES.

  5. van Kan, J., A Second-Order Accurate Pressure Correction Scheme for Viscous Incompressible Flow. DOI: 10.1137/0907059

  6. Schumann, U., and Sweet, R. E., A Direct Method for the Solution of Poisson’s Equation with Neumann Boundary Conditions on a Staggered Grid with Arbitrary Size. DOI: 10.1016/0021-9991(76)90062-0

  7. Buzbee, B. L., Dorr, F. W., George, J. A., and Golub, G. H., The Direct Solution of Discrete Poisson Equation on Irregular Regions. DOI: 10.1137/0708066

  8. Peskin, C. S., Flow Patterns around Heart Valves: A Numerical Method. DOI: 10.1016/0021-9991(72)90065-4

  9. McQueeen, D. M., and Peskin, C. S., A Three- Dimensional Computer Model of the Human Heart for Studying Cardiac Fluid Dynamics. DOI: 10.1145/563788.604453

  10. Griffith, B. E., and Peskin, C. S., On the Order of Accuracy of the Immersed Boundary Method: Higher Order Convergence Rate for Sufficiently Smooth Problems. DOI: 10.1016/j.jcp.2005.02.011

  11. Goldstein, D., Handler, R., and Sirovich, L., Modeling a No-Slip Surface with an External Force Field. DOI: 10.1006/jcph.1993.1081

  12. Goldstein, D., Handler, R., and Sirovich, L., Direct Numerical Simulation of Turbulent Flow over a Modeled Riblet-Covered Surface. DOI: 10.1017/S0022112095004125

  13. Fadlun, E. A., Verzicco, R., Orlandi, P., and Mohd-Yusof, J., Combined Immmersed- Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations. DOI: 10.1006/jcph.2000.6484

  14. Verzicco, R., Mohd-Yusof, J., Orlandi, P., and Haworth, D., LES in Complex Geometries Using Boundary Body Forces.

  15. Kim, J., Kim, D., and Choi, H., An Immersed- Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries. DOI: 10.1006/jcph.2001.6778

  16. Paravento, F., Pourquie, M. J., and Boersma, B. J., An Immersed Boundary Method for Complex Flow and Heat Transfer. DOI: 10.1007/s10494-007-9108-0

  17. Franke, R., Rodi,W., and Sch¨onung, B., Numerical Calculation of Laminar Vortex-Shedding Flow Past Cylinders. DOI: 10.1016/0167-6105(90)90219-3

  18. Kornhaas, M., Dö rte, S., Sternel, C., and Schä fer, M., Influence of Time Step Size and Convergence Criteria on Large-Eddy Simulations with Implicit Time Discretization. DOI: 10.1007/978-1-4020-8578-9_10

  19. Horn, R. A., and Johnson, C. R., Matrix Analysis.

  20. Breugem, W. P., Boersma, B. J., and Uittenbogaard, R. E., Direct Numerical Simulations of Plane Channel Flow over a 3D Cartesian Grid of Cubes.

  21. Wesseling, P., Principles of Computational Fluid Dynamics.


Articles with similar content:

ON THE POSSIBILITY OF LAMINAR FLOW CONTROL ON A SWEPT WING BY MEANS OF PLASMA ACTUATORS
TsAGI Science Journal, Vol.45, 2014, issue 6
Sergei Leonidovich Chernyshev, Vladimir Vladimirovich Skvortsov, Sergey Viktorovich Manuilovich, Alexander Petrovich Kuryachii, Dmitriy Anatolyevich Rusyanov
Conjugate Flow and Heat Transfer Investigations of Turbine Nozzle Guide Vanes
International Heat Transfer Conference 12, Vol.57, 2002, issue
Karsten Kusterer, Dieter Bohn, Tom Heuer
EFFECT OF ICING ON THE AERODYNAMIC CHARACTERISTICS OF AIRCRAFT DURING LANDING
TsAGI Science Journal, Vol.45, 2014, issue 6
Vladimir Valeryevich Bogatyrev
NUMERICAL VISUALIZATION OF FLOW AROUND A SUPERSONIC FLYING VEHICLE WITH A CONICAL STABILIZER
Journal of Flow Visualization and Image Processing, Vol.19, 2012, issue 2
Tatiana Yurievna Melnichuk, V. Yu. Lunin, Alexander N. Kravtsov
ANEWMETHODOFBOUNDARY CONDITIONSSTATEMENTAT THEREMOTE BOUNDARY FOR USE IN FINITE-VOLUME METHODSOFNUMERICALSOLUTIONS OF AERODYNAMIC PROBLEMS
TsAGI Science Journal, Vol.40, 2009, issue 1
Sergei Vladimirovich Matyash