Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i6.50
pages 545-558

Hybrid Simulations of Two-Way Coupled Turbulent Magnetohydrodynamic Flows

Sasa Kenjeres
Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J.M. Burgerscentrum for Fluid Mechanics, Delft, The Netherlands

RÉSUMÉ

We have applied a hybrid approach that combines the transient Reynolds-averaged Navier-Stokes (T-RANS) method for velocity and hydrodynamical turbulence with a direct numerical solving (DNS) of the magnetic induction equation for two-way coupled turbulent magnetohydrodynamic (MHD) flows. An originally developed electromagnetically extended two-equations (k-) eddy-viscosity-based model was used for the hydrodynamical turbulence closure. The validation of the hybrid approach was performed by simulating the Riga-dynamo experimental setup, which is characterized by an intermediate value of the magnetic Reynolds number (Rem 20) and a very high value of the hydrodynamical Reynolds number (Re 3.5 106). Numerical simulations provided all general features of the magnetic saturation regime with the frequency and amplitude of the generated magnetic field in good agreement with available experiments.

RÉFÉRENCES

  1. Moffatt, H. K., Field Generation in Electrically Conducting Fluids.

  2. Krause, F., and Rädler, K. H., Mean-field Magnetohydrodynamics and Dynamo Theory.

  3. Rüdiger, G., and Hollerbach, R., The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory.

  4. Gailitis, A., Lielausis, O., and Dement’ev, S., Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility. DOI: 10.1103/PhysRevLett.84.4365

  5. Gailitis, A., Lielausis, O., and Platacis, E., Magnetic Field Saturation in the Riga Dynamo Experiment. DOI: 10.1103/PhysRevLett.86.3024

  6. Stieglitz, R., and Müller, U., Experimental Demonstration of a Homogeneous Two-Scale Dynamo. DOI: 10.1063/1.1331315

  7. Müller, U., and Stieglitz, R., The Karlsruhe Dynamo Experiment.

  8. Monchaux, R., Berhanu, M., and Bourgoin, M., Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium. DOI: 10.1103/PhysRevLett.98.044502

  9. Monchaux, R., Berhanu, M., and Aumaitre, S., The von Kármán Sodium Experiment: Turbulent Dynamical Dynamos. DOI: 10.1063/1.3085724

  10. Aumaitre, S., Berhanu, M., and Bourgoin, M., The VKS Experiment: Turbulent Dynamical Dynamos. DOI: 10.1016/j.crhy.2008.07.002

  11. Kenjereš, S., Hanjalić, K., Renaudier, S., Stefani, F., Gerbeth, G., and Gailitis, A., Coupled Fluid-Flow and Magnetic-Field Simulation of the Riga Dynamo Experiment. DOI: 10.1063/1.2404930

  12. Kenjereš, S., and Hanjalić, K., Numerical Simulation of a Turbulent Magnetic Dynamo. DOI: 10.1103/PhysRevLett.98.104501

  13. Kenjereš, S., and Hanjalić, K., Numerical Insights into Magnetic Dynamo Action in a Turbulent Regime. DOI: 10.1088/1367-2630/9/8/306

  14. Widlund, O., Zahrai, S., and Bark, F. H., Development of a Reynolds stress closure for modelling of homogeneous MHD turbulence. DOI: 10.1063/1.869714

  15. Kenjereš, S., Hanjalić, K., and Bal, D., A Direct-Numerical-Simulations Based Second-Moment Closure for Turbulent Magnetohydrodynamic Flows. DOI: 10.1063/1.1649335

  16. Kenjereš, S., Hanjalić, K., On the Implementation of Effects of Lorentz Force in Turbulence Closure Models. DOI: 10.1016/S0142-727X(00)00017-5

  17. Hanjalić, K., Kenjereš, S., Reorganization of Turbulence Structure in Magnetic Rayleigh- Benard Convection: A T-RANS Study. DOI: 10.1088/1468-5248/1/1/008

  18. Hanjalić, K., Kenjereš, S., T-RANS Simulation of Deterministic Eddy Structure in Flows Driven by Thermal Buoyancy and Lorentz Force. DOI: 10.1023/A:1013570705813

  19. Kenjereš, S., Hanjalić, K., Numerical Simulation of Magnetic Control of Heat Transfer in Thermal Convection. DOI: 10.1016/j.ijheatfluidflow.2004.02.021

  20. Kenjereš, S., Hanjalić, K., Transient Analysis of Rayleigh-Benard Convection with a RANS Model. DOI: 10.1016/S0142-727X(99)00007-7

  21. Kenjereš, S., Hanjalić, K., Invited Review: Tackling Complex Turbulent Flows with Transient RANS. DOI: 10.1088/0169-5983/41/1/012201

  22. Gailitis, A., Lielausis, O., and Platacis, E., Colloquium: Laboratory Experiments on Hydromagnetic Dynamos. DOI: 10.1103/RevModPhys.74.973

  23. Gailitis, A., Lielausis, O., and Platacis, E., Riga Dynamo Experiment and its Theoretical Background. DOI: 10.1063/1.1666361

  24. Gailitis, A., Gerbeth, G., and Gundrum, T., History and Results of the Riga Dynamo Experiments. DOI: 10.1016/j.crhy.2008.07.004

  25. Kenjereš, S., Electromagnetic Enhancements of Turbulent Heat Transfer. DOI: 10.1615/ICHMT.2009.TurbulHeatMassTransf.310

  26. Kenjereš, S., Numerical Analysis of Blood Flow in Realistic Arteries Subjected to Strong Non-Uniform Magnetic Fields. DOI: 10.1016/j.ijheatfluidflow.2008.02.014

  27. Rhie, C. M., and Chow,W. L., Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. DOI: 10.2514/3.8284

  28. Lien, F. S., and Leschziner, M. A., Upstream Monotonic Interpolation for Scalar Transport with Application to Complex Turbulent Flows. DOI: 10.1002/fld.1650190606


Articles with similar content:

EXPERIMENTAL STUDY AND LARGE EDDY SIMULATION OF ACCELERATING FLOW FROM AN INITIAL TURBULENT FLOW
TSFP DIGITAL LIBRARY ONLINE, Vol.10, 2017, issue
Akshat Mathur, Sam Gorji, Shuisheng He, Mehdi Seddighi
On the early onset of transition in circular-orifice baffled tubes: an experimental study
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2018, issue
D. Crespí, J. P. Solano, Jose Munoz, P. G. Vicente
COMPRESSION OF A TUMBLING VORTEX: A LES AND PANS STUDY
TSFP DIGITAL LIBRARY ONLINE, Vol.7, 2011, issue
Suad Jakirlic, C.-Y. Chang, Cameron Tropea, Branislav Basara
Statistical turbulence models to simulate turbulence emergence in atmosphere.
Turbulence and Shear Flow Phenomena -1 First International Symposium, Vol.0, 1999, issue
Jean-Francois Sini, Bruno Abart
Statistical turbulence models to simulate turbulence emergence in atmosphere
TSFP DIGITAL LIBRARY ONLINE, Vol.1, 1999, issue
Jean-Francois Sini, Bruno Abart