Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i3.50
pages 217-225

A Micropillar Compression Simulation by a Multiscale Plastic Model Based on 3-D Discrete Dislocation Dynamics

Z. L. Liu
Failure Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
X. M. Liu
Failure Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Zhuo Zhuang
Failure Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Yuan Gao
Applied Mechanics Laboratory, School of Aerospace, Tsinghua University, Beijing 100084 China
X. C. You
Failure Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

RÉSUMÉ

In this article, a microcompression test for the Cu single-crystal micropillar containing an initial dislocation network is simulated by a multiscale computational model. This model combines a 3-D discrete dislocation dynamics (DDD) approach and a finite element method (FEM). The DDD code calculates the plastic strain induced by the slip of dislocation lines in a finite single crystal, which serves as a substitute for the constitutive relationship used in the conventional continuum mechanics. On the other hand, the displacement and stress field in crystal are calculated by FEM. In our simulations, the compression stress-strain curve ofthe micropillars can be divided into three distinct stages: a linear hardening stage, a normal plastic strain hardening stage, and a dislocation starvation hardening stage, accompanying a rather high stress level. The simulation results show that this atypical mechanical behavior is related with the effective "spiral dislocation sources" operation at the second stage and the dislocations escape from the free surfaces at the third stage. At last, the micropillar is almost dislocation-free, as observed in recent experiments.


Articles with similar content:

A MULTISCALE COMPUTATIONAL METHOD FOR 2D ELASTOPLASTIC DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 2
Hongwu Zhang, Hui Liu
A Virtual Test Facility for Simulating Detonation-and Shock-Induced Deformation and Fracture of Thin Flexible Shells
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 1
Daniel Meiron, Sean P. Mauch, Fehmi Cirak, Ralf Deiterding
THE MICROSTRUCTURAL MODEL OF MECHANICAL BEHAVIOR OF A SHAPE-MEMORY ALLOY
Nanoscience and Technology: An International Journal, Vol.7, 2016, issue 1
I. V. Mishustin, A. A. Movchan
A COARSE-GRAINED ATOMISTIC METHOD FOR 3D DYNAMIC FRACTURE SIMULATION
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Youping Chen, Qian Deng
DEVELOPMENT OF MULTILEVEL MODELS BASED ON CRYSTAL PLASTICITY: DESCRIPTION OF GRAIN BOUNDARY SLIDING AND EVOLUTION OF GRAIN STRUCTURE
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 4
Alexey I. Shveykin, E. R. Sharifullina