Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

A Micropillar Compression Simulation by a Multiscale Plastic Model Based on 3-D Discrete Dislocation Dynamics

Volume 7, Numéro 3, 2009, pp. 217-225
DOI: 10.1615/IntJMultCompEng.v7.i3.50
Get accessGet access

RÉSUMÉ

In this article, a microcompression test for the Cu single-crystal micropillar containing an initial dislocation network is simulated by a multiscale computational model. This model combines a 3-D discrete dislocation dynamics (DDD) approach and a finite element method (FEM). The DDD code calculates the plastic strain induced by the slip of dislocation lines in a finite single crystal, which serves as a substitute for the constitutive relationship used in the conventional continuum mechanics. On the other hand, the displacement and stress field in crystal are calculated by FEM. In our simulations, the compression stress-strain curve ofthe micropillars can be divided into three distinct stages: a linear hardening stage, a normal plastic strain hardening stage, and a dislocation starvation hardening stage, accompanying a rather high stress level. The simulation results show that this atypical mechanical behavior is related with the effective "spiral dislocation sources" operation at the second stage and the dislocations escape from the free surfaces at the third stage. At last, the micropillar is almost dislocation-free, as observed in recent experiments.

CITÉ PAR
  1. Zhao Xue-Chuan , Liu Xiao-Ming , Gao Yuan , Zhuang Zhuo , Molecular dynamical investigation on plastic behavior of Cu(100) twist-grain boundary under shear load, Acta Physica Sinica, 59, 9, 2010. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain