Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i1.90
pages 119-136

MOLECULAR DYNAMICS PREDICTION OF ELASTICAND PLASTIC DEFORMATION OF SEMICRYSTALLINE POLYETHYLENE

Severine Queyroy
CEMEF, ENSMP, 1 rue Claude Daunesse F-06940 Sophia Antipolis, France
Bernard Monasse
CEMEF, ENSMP, 1 rue Claude Daunesse F-06940 Sophia Antipolis, France

RÉSUMÉ

The elastic and large plastic deformations of semicrystalline polymers involve the multiscale organization of molecules inside spherulites and depend on the deformation path. Under a tensile test, as an effect of the lamellar organization, the first steps of elastic-plastic deformation are localized in a very thin layer in the equatorial zone, as shown by experiments. The molecular mechanism and the resulting stress{strain properties can be predicted by molecular dynamics simulations. An all-atom model is necessary to predict the behavior of polyethylene chains inside the amorphous and crystalline phases. Two large-molecular-weight polyethylene chains with a complex path are involved in crystalline and amorphous phases and in their interconnection with a 3D periodic condition. This paper explains the main physical characteristics of semicrystalline organization and the building process of this first molecular model which is fully coupled. This model, stretched along the thickness of the lamellae, is representative of the equatorial zone in a spherulite during the first steps of elastic and plastic deformation. The deformation mechanism of amorphous and crystalline phases is analyzed as a function of strain and strain-rate. A nanocavitation in the amorphous phase results from a topological constraint imposed by the crystalline phase. This mechanism is a natural consequence of the model and explains the cavitation observed at a macroscopic level.

RÉFÉRENCES

  1. Argon, A. S., Bartczak, Z., Cohen, R. E., Galeski, A., Lee, B. J., and Parks, D. M., Deformation Induced Texture Development in Polyethylene: Computer Simulation and Experiments, Ed. S. Fakirov, Oriented Polymer Materials.

  2. Balijepalli, S. and Rutledge, G. C., Conformational statistics of polymer chains in the interphase of semi-crystalline polymers. DOI: 10.1016/S1089-3156(99)00063-X

  3. Bédoui, F., Diani, J., and Régnier, G., Micromechanical modeling of elastic properties in polyolefins. DOI: 10.1016/j.polymer.2004.01.028

  4. Brandrupt, J., Immergut, E. H., and Grulke, E. A., Polymer Handbook.

  5. Brown, D. and Clarke, J. H. R., Molecular dynamics computer simulation of polymer fibre microstructure. DOI: 10.1063/1.450313

  6. Bunn, C. W., The crystal structure of long-chain paraffin hydrocarbons. DOI: 10.1039/TF9393500482

  7. Butler, M. F., Donald, A. M., and Ryan, A. J., Time resolved simultaneous small- and wide-angle X-ray scattering during polyethylene deformation: 1. Cold drawing of ethylene-alpha-olefin copolymers. DOI: 10.1016/S0032-3861(97)00111-0

  8. Dehaudt, E., Fusion et cristallisation des paraffines et polyéthylènes.

  9. Flory, P. J., On the morphology of the crystalline state in polymers. DOI: 10.1021/ja00874a004

  10. Flory, P. J., Statistical Mechanics of Chain Molecules.

  11. Flory, P. J., Yoon, D. Y., and Dill, K. A., The interphase in lamellar semicrystalline polymers. DOI: 10.1021/ma00134a055

  12. Geil, P. H., Polymer Single Crystals.

  13. G’Sell, C. and Dahoun, A., Evolution of microstructure in semi-crystalline polymers under large plastic deformation. DOI: 10.1016/0921-5093(94)91058-8

  14. G’Sell, C. and Jonas, J. J., Determination of the plastic behavior of solid polymers at constant true strain rate. DOI: 10.1007/BF00772717

  15. Guttman, C. M., DiMarzio, E. A., and Hoffman, J. D., Modeling the amorphous phase and the fold surface of a semicrystalline polymer—The Gambler’s Ruin method. DOI: 10.1016/0032-3861(81)90315-3

  16. Hoffman, J. D. and Lauritzen, J. I., Crystallization of bulk polymers with chain folding: Theory of growth of lamellar spherulites.

  17. Hoffman, J. D., Davis, G. T., and Lauritzen, J. I., Treatise on Solid State Chemistry.

  18. HyperChem(TM) Professional 5.1, Hypercube.

  19. Karasawa, N., Dasgupta, S., and Goddard III,W. A., Mechanical properties and force field for polyethylene crystal.

  20. Lee, B., Parks, D., and Ahzi, S., Micromechanical modeling of large plastic deformation and texture evolution in semicrystalline polymers. DOI: 10.1016/0022-5096(93)90018-B

  21. Marqusee, J. A. and Dill, K. A., Chain configurations in lamellar semicrystalline interphases. DOI: 10.1021/ma00163a015

  22. Mayo, S. L., Barry, B. D., Olafson, D., and Goddard III, W. A., DREIDING: A generic force field for molecular simulations. DOI: 10.1021/j100389a010

  23. Meinel, G. and Peterlin, A., Plastic deformation of polyethylene II: Change of mechanical properties during drawing. DOI: 10.1002/pol.1971.160090106

  24. Meyer, H. and M¨uller-Plathe, F., Formation of chain-folded structures in supercooled polymer melts examined by MD simulations. DOI: 10.1021/ma011309l

  25. Michler, G. H. and Godehardt, R., Deformation mechanisms of semi-crystalline polymers on the submicron scale. DOI: 10.1002/1521-4079(200007)35:6/7<863::AID-CRAT863>3.0.CO;2-B

  26. Monasse, B. and Haudin, J. M., Growth transition and morphology change in polypropylene. DOI: 10.1007/BF01412960

  27. Muthukumar, M. and Welch, P., Modeling polymer crystallization from solutions. DOI: 10.1016/S0032-3861(00)00226-3

  28. Sch¨urmann, B. L., Niebergall, U., Severin, N., Burger, Ch., Stocker,W., and Rabe, J. P., Polyethylene (PEHD)/polypropylene (iPP) blends: Mechanical properties, structure and morphology. DOI: 10.1016/S0032-3861(97)10295-6

  29. Smith, W. and Forester, T. R., DL POLY: Molecular simulation routines.

  30. Weynant, E., Haudin, J. M., and G’Sell, C., In-situ observation of the spherulite deformation in polybutene-1 (Modification I). DOI: 10.1007/BF00550534

  31. Wunderlich, B., Macromolecular Physics, Volume I: Crystal Structure, Morphology.

  32. Yoon, D. Y. and Flory, P. J., Small-angle neutron scattering by semicrystalline polyethylene. DOI: 10.1016/0032-3861(77)90170-7


Articles with similar content:

A MULTISCALE MICRO-CONTINUUM MODEL TO CAPTURE STRAIN LOCALIZATION IN COMPOSITE MATERIALS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
Thibaud Chevalier, Franck J. Vernerey
Effects of Externally Applied Stress on the Properties of Quantum Dot Nanostructures
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
H. D. Robinson, R. Bose, H. T. Johnson, B. B. Goldberg
Multiscale Analysis and Numerical Modeling of the Portevin-Le Chatelier Effect
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 2
Xiaoping Wu, Qingchuan Zhang, Zhongjia Chen
PORE-SCALE SIMULATION OF ICE MELTING PROCESS IN POROUS MEDIA
Second Thermal and Fluids Engineering Conference, Vol.32, 2017, issue
Li Chen, Yu-Tong Mu, Pu He, Wen-Quan Tao
Multiscale Modeling of the Negative Strain-Rate Sensitivity in Solid Solutions: A Constitutive Formulation
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Catalin Picu, M. A. Soare