Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i4.90
pages 481-501


Torsten Luther
Institute of Structural Mechanics, Bauhaus University Weimar , Germany
Carsten Konke
Bauhaus-Universität Weimar, Institute of Structural Mechanics, Germany


This paper contributes to a hierarchical multiscale concept for the simulation of brittle intergranular fracture in polycrystalline materials, for example, aluminum. Intended is the numerical investigation of physical fracture phenomena on an atomistic microscale and the integration of resulting parameters into damage models on the engineering continuum scale. A procedure for computational intergranular fracture analysis on the atomistic scale is presented, and the transition to coupled cohesive zone representations of continuum models is explained. The brittle intergranular fracture process on the atomistic scale is investigated in three dimensions, applying a parallelized nonlocal quasicontinuum method, which was implemented for the robust and efficient analysis of grain boundary fracture in polycrystalline metals with arbitrary misorientation. The nonlocal quasicontinuum method fully describes the material behavior by atomistic potential functions but reduces the number of atomic degrees of freedom by introducing kinematic couplings in regions of a smooth deformation field. Interface separation laws are obtained from tensile and shear simulations on the atomistic scale, and extracted cohesive parameters are used for parameterization of traction separation laws, which are part of coupled cohesive zone models, to simulate the brittle interface decohesion in heterogeneous polycrystal structures.


  1. Anderson, T. L., Fracture Mechanics: Fundamentals and Applications.

  2. Anvari, M., Scheider, I., and Thaulow, C., Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements. DOI: 10.1016/j.engfracmech.2006.03.016

  3. Barenblatt, G. I., The mathematical theory of equilibrium cracks in brittle fracture. DOI: 10.1016/s0065-2156(08)70121-2

  4. Bazant, Z. P., Why continuum damage is nonlocal: Justification by quasiperiodic microcrack array. DOI: 10.1016/0093-6413(87)90063-2

  5. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., and Gumbsch, P., Structural relaxation made simple. DOI: 10.1103/PhysRevLett.97.170201

  6. Bouvard, J. L., Chaboche, J. L., and Gallerneau, F., A cohesive zone model for fatigue and creep-fatigue crack growth in single crystal superalloys. DOI: 10.1016/j.ijfatigue.2008.11.002

  7. Chaboche, J. L., Continuum damage mechanics: Part I — general concepts.

  8. Chaboche, J. L., Continuum damage mechanics: Part II — damage growth, crack initiation, and crack growth. DOI: 10.1115/1.3173662

  9. Chandra, N. and Dang, P., Atomistic simulation of grain boundary sliding and migration. DOI: 10.1023/A:1004531706998

  10. Chandra, N., Li, H., Shet, C., and Ghonem, H., Some issues in the application of cohesive zone models for metal-ceramic interfaces. DOI: 10.1016/s0020-7683(02)00149-x

  11. Coffman, V. R. and Sethna, J. P., Grain boundary energies and cohesive strength as a function of geometry. DOI: 10.1103/PhysRevB.77.144111

  12. Coffman, V. R., Sethna, J. P., Heber, G., Liu, M., Ingraffea, A., Bailey, N. P., and Barker, E. I., A comparison of finite element and atomistic modelling of fracture. DOI: 10.1088/0965-0393/16/6/065008

  13. de Borst, R., Numerical aspects of cohesive-zone models. DOI: 10.1016/S0013-7944(03)00122-X

  14. Dugdale, D. S., Yielding of steel shields containing slits.

  15. Eidel, B. and Stukowski, A., A variational formulation of the quasicontinuum method based on energy sampling in clusters. DOI: 10.1016/j.jmps.2008.09.017

  16. Ercolessi, F., The Ercolessi-Adams glue potential for aluminum.

  17. Ercolessi, F. and Adams, J. B., Interatomic potentials from first-principles calculations: The force-matching method. DOI: 10.1209/0295-5075/26/8/005

  18. Erwin, N. and Warner, D., Interface Structure Data Bank.

  19. Gall, K., Horstemeyer, M. F., Van Schilfgaarde, M., and Baskes, M. I., Atomistic simulations on the tensile debonding of an aluminum-silicon interface. DOI: 10.1016/S0022-5096(99)00086-1

  20. Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth: Part I — Yield criteria and flow rules for porous ductile media.

  21. Hillerborg, A., Modéer, M., Petersson, P. E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. DOI: 10.1016/0008-8846(76)90007-7

  22. Iesulauro, E., Ingraffea, A. R., Arwade, S. R., and Wawrzynek, P. A., Simulation of grain boundary decohesion and crack propagation in aluminum microstructure models.

  23. Knap, J. and Ortiz, M., An analysis of the quasicontinuum method. DOI: 10.1016/S0022-5096(01)00034-5

  24. Luther, T., Adaptation of Atomistic and Continuum Methods for the Hierarchical Multiscale Simulation of Brittle Intergranular Damage.

  25. Luther, T. and Könke, C., Polycrystal models for the analysis of intergranular crack growth in metallic materials. DOI: 10.1016/j.engfracmech.2009.07.006

  26. Maugnin, G. A., The Thermomechanics of Plasticity and Fracture.

  27. McClintock, F. A., A criterion for ductile fracture by the growth of holes. DOI: 10.1115/1.3601204

  28. Miller, R. E., On the Generalization of Continuum Models to Include Atomistic Features.

  29. Miller, R. E. and Tadmor, E. B., The quasicontinuum method: Overview, application and current directions. DOI: 10.1023/A:1026098010127

  30. Mishin, Y., CCM6 Embedded Atom Potentials.

  31. Moës, N. and Belytschko, T., Extended finite element method for cohesive crack growth. DOI: 10.1016/S0013-7944(01)00128-X

  32. Needleman, A., A continuum model for void nucleation by inclusion debonding. DOI: 10.1115/1.3173064

  33. Nishitani, S. R., Ohgushi, S., Inoue, Y., and Adachi, H., Grain boundary energies of Al simulated by environment-dependent embedded atom method. DOI: 10.1016/S0921-5093(00)01636-1

  34. Otsuki, A. and Mizuno, M., Grain boundary structure and related phenomena.

  35. Rabczuk, T. and Belytschko, T., A three-dimensional large deformation meshfree method for arbitrary evolving cracks. DOI: 10.1016/j.cma.2006.06.020

  36. Rittner, J. D. and Seidman, D. N., ⟨110⟩ symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies.

  37. Sansoz, F. and Molinari, J. F., Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper. DOI: 10.1016/j.scriptamat.2004.02.031

  38. Sansoz, F. and Molinari, J. F., Mechanical behavior of ∑ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study.

  39. Shenderova, O. A., Brenner, D.W., Omeltchenko, A., Su, X., and Yang, L. H., Atomistic modeling of the fracture of polycrystalline diamond.

  40. Shenoy, V. B., Quasicontinuum Models of Atomic-Scale Mechanics.

  41. Spearot, D. E., Atomistic Calculations of Nanoscale Interface Behavior in FCC Metals.

  42. Spearot, D. E., Jacob, K. I., and McDowell, D. L., Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations. DOI: 10.1016/j.mechmat.2003.08.002

  43. Tadmor, E. B., The Quasicontinuum Method — Modeling Microstructure on Multiple Length Scales: A Mixed Continuum and Atomistic Approach.

  44. Tadmor, E. B. and Miller, R. E., The theory and implementation of the quasicontinuum method. DOI: 10.1007/978-1-4020-3286-8_34

  45. Tadmor, E. B., Ortiz, M., and Phillips, R., Quasicontinuum analysis of defects in solids. DOI: 10.1080/01418619608243000

  46. Tvergaard, V., Material failure by void growth to coalescence.

  47. Tvergaard, V., Cohesive zone representations of failure between elastic or rigid solids and ductile solids. DOI: 10.1016/S0013-7944(03)00128-0

  48. Tvergaard, V. and Hutchinson, J. W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. DOI: 10.1016/0022-5096(92)90020-3

  49. Unger, J. F., Eckardt, S., and Könke, C., Modelling of cohesive crack growth in concrete structures with the extended finite element method. DOI: 10.1016/j.cma.2007.03.023

  50. van der Giessen, E. and Tvergaard, V., Micromechanics of intergranular creep failure under cyclic loading. DOI: 10.1016/1359-6454(95)00399-1

  51. Wang, G. J., Sutton, A. P., and Vitek, V., A computer simulation study of ⟨001⟩ and ⟨111⟩ tilt grain boundaries: The multiplicity of structures.

  52. Warner, D. H. and Molinari, J. F.,, Deformation by grain boundary hinge-like behavior. DOI: 10.1016/j.matlet.2007.04.083

  53. Warner, D. H., Sansoz, F., and Molinari, J. F., Atomistic based continuum investigation of plastic deformation in nanocrystalline copper. DOI: 10.1016/j.ijplas.2005.04.014

  54. Wolf, D. and Merkle, K. L., Correlation between the structure and energy of grain boundaries in metals.

  55. Wortman, J. J. and Evans, R. A., Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. DOI: 10.1063/1.1713863

  56. Yamakov, V., Saether, E., and Glaessgen, E. H., Multiscale modeling of intergranular fracture in aluminum: Constitutive relation for interface debonding. DOI: 10.1007/s10853-008-2823-7

  57. Yamakov, V., Saether, E., Phillips, D. R., and Glaessgen, E. H., Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. DOI: 10.1016/j.jmps.2006.03.004

  58. Yamakov, V., Saether, E., Phillips, D. R., and Glaessgen, E. H., Dynamics of nanoscale grain-boundary decohesion in aluminum by molecular-dynamics simulation. DOI: 10.1007/s10853-006-1176-3

Articles with similar content:

International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Mahdad Eghbalian, Richard Wan
Multiscale Total Lagrangian Formulation for Modeling Dislocation-Induced Plastic Deformation in Polycrystalline Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
Jiun-Shyan Chen, Nasr M. Ghoniem, Xinwei Zhang, Shafigh Mehraeen
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Somnath Ghosh, Subhendu Chakraborty, Jiaxi Zhang
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
Application of the Automatic Image Processing in Modeling of the Deformation Mechanisms Based on the Digital Representation of Microstructure
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 3
Lukasz Madej, Lukasz Rauch