Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012002781
pages 581-597

GRADIENT-DEPENDENT CONSTITUTIVE LAWS FOR A MODEL OF MICROCRACKED BODIES

Malika Bongue Boma
Department of Mechanical and Manufacturing Engineering, University of Calgary
Les Sudak
Department of Mechanical and Manufacturing Engineering, University of Calgary
Salvatore Federico
Department of Mechanical and Manufacturing Engineering, University of Calgary

RÉSUMÉ

The aim of this paper is to propose nonlocal constitutive laws for a model of microcracked bodies. To do so, we use a multiscale approach: we call macroscopic the description in which the body is considered as a continuum and we refer to the microscopic scale when a crack is studied at a closer view. We first propose an approximation of the stress and strain fields in the vicinity of a crack, considering the neighboring discontinuities. We then use equivalence principles between micro- and macroscopic scales in order to determine the expression of the macroscopic constitutive assignments of the body. The latter are written not only in terms of the local values of the deformation and the local values of the geometrical variables representative of the crack field, but also in terms of their gradients. Numerical implementations are performed; we compare constitutive laws obtained from local and nonlocal approaches.

RÉFÉRENCES

  1. Bazant, Z. P., Why continuum damage is non-local: micromechanical arguments. DOI: 10.1061/(ASCE)0733-9399(1991)117:5(1070)

  2. Bazant, Z. P. and Jirasek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress. DOI: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

  3. Bongue Boma, M., Modélisation de la fissuration pour l'évaluation de la perte d'étanchéité des structures en béton armé sous chargements mécaniques.

  4. Bongue-Boma, M. and Brocato, M., Liquids with vapour bubbles. DOI: 10.1016/j.camwa.2007.04.006

  5. Bongue Boma, M. and Brocato, M., A continuum model of micro-cracks in concrete. DOI: 10.1007/s00161-009-0130-4

  6. Bui, H.-D., Mécanique de la Rupture Fragile.

  7. Capriz, G., Continua with Microstructure.

  8. Cosserat, E. and Cosserat, F., Théorie des corps déformables.

  9. de Borst, R., Pamin, J., Peerlings, R., and Sluys, B., On gradient enhanced damage and plasticity models for failure in quasi brittle and frictional materials. DOI: 10.1007/BF00356485

  10. Denarie, E., Etude expérimentale des couplages viscoélatsicité-croissances des fissures dans les bétons de ciment. DOI: 10.5075/epfl-thesis-2195

  11. Edelen, D. G. B., Green, A., and Laws, N., Nonlocal continuum mechanics. DOI: 10.1007/BF00251544

  12. Epstein, M. and de Leon, M., Geometrical theory of uniform cosserat media. DOI: 10.1016/S0393-0440(97)00042-9

  13. Grassl, P. and Jirasek, M., Damage-plastic model for concrete failure. DOI: 10.1016/j.ijsolstr.2006.06.032

  14. Kachanov, L. M., Time of the rupture process under creep conditions.

  15. Kratzig, W. B. and Polling, R., An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. DOI: 10.1016/j.compstruc.2004.03.002

  16. Maugin, G. A., Internal variables and dissipative structures. DOI: 10.1515/jnet.1990.15.2.173

  17. Mazars, J., Application de la Mécanique de lendommagement au comportement non linéaire et à la rupture du béton de structure.

  18. Mazars, J., A description of micro- and macroscale damage of concrete structures. DOI: 10.1016/0013-7944(86)90036-6

  19. Nguyen, G. D., A thermodynamic approach to non-local damage modelling of concrete. DOI: 10.1016/j.ijsolstr.2007.11.001

  20. Santaoja, K., Gradient theory from the thermomechanics point of view. DOI: 10.1016/S0013-7944(03)00038-9

  21. Simonin, F., Comportement thermomécanique de bétons réfractaires alumineux contenant du spinelle de magnésium.

  22. Ward, M. A. and Cook, D. J., The mechanism of tensile creep in concrete. DOI: 10.1680/macr.1969.21.68.151


Articles with similar content:

3D Micromechanical Modeling of Particulate Composite Materials with Imperfect Interface
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
X. B. Yu, S. A. Meguid, Z. Zhong
Two-Scale Modeling of Tissue Perfusion Problem Using Homogenization of Dual Porous Media
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Robert Cimrman, Eduard Rohan
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
Nonlocal Elastic-Damage Interface Mechanical Model
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Guido Borino, Francesco Parrinello, Boris Failla
Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 3
Rashid K. Abu Al-Rub, George Voyiadjis