Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012003471
pages 615-634

MULTISCALE VISCOELASTIC−VISCOPLASTIC MODEL FOR THE PREDICTION OF PERMANENT DEFORMATION IN FLEXIBLE PAVEMENTS

Elisabeth Aigner
Austrian Institute for Construction Engineering, Schenkenstrasse 4, A-1010 Vienna, Austria
Roman Lackner
Material Technology Innsbruck, University of Innsbruck, Innsbruck, Austria
Josef Eberhardsteiner
Institute for Mechanics of Materials and Structures, Vienna University of Technology, Karlsplatz 13/202, A-1040 Vienna, Austria

RÉSUMÉ

Creep/relaxation of asphalt consisting of the thermorheological binder material (bitumen), inclusions (aggregates), and air voids may lead to considerable permanent deformations (rutting). Although viscoelastic models are suitable to describe the asphalt behavior at low stress levels and in the low-temperature regime, material models taking plastic deformation into account are needed in order to capture the thermorheological behavior of asphalt at elevated temperature regimes. In this paper, the deformation behavior of asphalt is described by means of a creep/relaxation function, which, in a second step, is extended toward viscoplastic deformation. The underlying model parameters describing the thermorheological nature of asphalt are determined from a multiscale model considering five observation scales. The model, implemented into a Finite Element program, is used for determination of permanent deformations, as illustrated by the reanalysis of triaxial cyclic compression tests and the prediction of rutting in flexible pavements.

RÉFÉRENCES

  1. Aigner, E., Lackner, R., and Pichler, C., Multiscale prediction of viscoelastic properties of asphalt concrete. DOI: 10.1061/(ASCE)0899-1561(2009)21:12(771)

  2. Blab, R., Eberhardsteiner, J., Gagliano, B., Jäger, A., Kappl, K., Lackner, R., Spiegl, M., and Wistuba, M., Christian Doppler Laboratory—Mid Term Report, Christian Doppler Laboratory for Performance-Based Optimization of Flexible Pavements.

  3. Blab, R., Kappl, K., Lackner, R., and Aigner, E. , Samaris d28 Vol. 1: Main report: Permanent deformation of bituminous bound materials in flexible pavements-evaluation of test methods and prediction models.

  4. Di Benedetto, H., Delaporte, B., Sauzeat, C., and Neifar, M., A thermo-viscoplastic model for bituminous materials. DOI: 10.1007/1-4020-5370-3_176

  5. Huet, C., Étude par une méthode d'impédance du comportement viscoélastique des matériaux hydrocarbonés in French [Study of the viscoelastic behavior of bituminous mixes by method of impedance].

  6. Mandel, J., Méchanique des milieux continus (in French) [Mecanics of Continuous Media].

  7. Mori, T. and Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. DOI: 10.1016/0001-6160(73)90064-3

  8. Oeser, M. and Moller, B., Numerische simulation des nichtlinearen verhaltens flexibler mehrschichtiger verkehrswegebefestigungen.

  9. Oeser, M., Scarpas, A., Kasbergen, C., and Pellinen, T., Rheological elements on the basis of fractional derivatives.

  10. Olard, F., Comportement thermoméchanique des enrobes bitumineux a basses temperatures. Relations entre les proprietes du liant et de l'enrobe (in French), [Thermomechanical behavior of bituminous mixtures at low temperatures. Relations between characteristi.

  11. ÖNORM-EN-12697-25, Asphalt - Prüfverfahren für Heißasphalt - Teil 25: Druckschwellversuch [Bituminous Mixtures - Test Methods for Hot-Mix Asphalt - Part 25: Cyclic Compression Test].

  12. Sayegh, G., Contribution à l'étude des propriétés viscoélastique des bitumes purs at des bétons bitumineux (in French), [Contribution of viscoelastic properties of pure bitumen on asphalt concrete].

  13. SHRP-A-370, Binder characterization and evaluation. Volume 4: Test Methods.


Articles with similar content:

Modeling the Interaction between Plasticity and the Austenite-Martensite Transformation
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Marc Geers, Varvara G. Kouznetsova
Multiscale Analysis and Numerical Modeling of the Portevin-Le Chatelier Effect
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 2
Xiaoping Wu, Qingchuan Zhang, Zhongjia Chen
Multiscale Dislocation Dynamics Plasticity
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
S. M. A. Khan, H. M. Zbib, G. Karami, M. Shehadeh
CALCULATION OF THE INTERGRANULAR ENERGY IN TWO-LEVEL PHYSICAL MODELS FOR DESCRIBING THERMOMECHANICAL PROCESSING OF POLYCRYSTALS WITH ACCOUNT FOR DISCONTINUOUS DYNAMIC RECRYSTALLIZATION
Nanoscience and Technology: An International Journal, Vol.7, 2016, issue 2
Peter V. Trusov, Nikita S. Kondratev
ASSESSMENT OF STATIC LOAD STRENGTH OF LAMINATED COMPOSITES
TsAGI Science Journal, Vol.50, 2019, issue 4
Alexander Ivanovich Oleinikov