Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Modeling Ionic Continua Under Multifield Conditions

Volume 4, Numéro 2, 2006, pp. 265-279
DOI: 10.1615/IntJMultCompEng.v4.i2.70
Get accessGet access

RÉSUMÉ

Recent advances in the development of electroactive polymer materials and composites along with the need for new multifunctional exploitation of these materials have underlined the need for the multi-field modeling of their behavior. Behavioral modeling of these materials is essential for design, material qualification, and material certification for sensing, actuation, and energy harvesting applications. The present paper proposes and applies a methodology for modeling the behavior of ionic continua under multi-field influence at the macro length scale. The computational implementation of this methodology addresses generation and solution of both the constitutive and the field evolution equations by appropriate use of continuum mechanics, irreversible thermodynamics, and electrodynamics. An application of this methodology for the case of electric multi-component anisotropic hygrothermoelasticity generates a constitutive model for a large class of materials capable of actuation, sensing, and energy harvesting applications. A specialization of this theory for isotropic and bi-component chemo-thermo-electro-elastic materials is provided along with the corresponding field equations. To demonstrate the capabilities of this approach for realistic applications, a system of nonlinear governing partial differential equations is derived to describe the state evolution of large deflection plates made from such material systems. These equations represent the electro-hygro-thermal generalization of the well-known von-Karman equations for large deflection plates and capture the actuating behavior of these plates. Finally, numerical solutions of these equations for two sets of boundary conditions are presented to demonstrate solution feasibility and realism of modeling in the context of actuation-based applications.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain