Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2016015857
pages 273-290

PERTURBATION-BASED SURROGATE MODELS FOR DYNAMIC FAILURE OF BRITTLE MATERIALS IN A MULTISCALE AND PROBABILISTIC CONTEXT

Junwei Liu
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD
Lori Graham-Brady
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD

RÉSUMÉ

Localization of failure in many materials is associated with the heterogeneity in the material microstructure. Multiscale models often address this heterogeneity by passing field variables back and forth between a macroscale model and subscale analyses at each integration point. Although this technique is often effective, it can be extremely costly to perform distinct microscale analyses for every integration point in the domain. The proposed work uses a perturbation-based approach, conceptually similar to in situ adaptive tabulation, which provides a straightforward surrogate model that can be orders of magnitude more efficient than the microscale model. The approach is demonstrated specifically for models of dynamic brittle failure, in which crack populations are tracked from one load step to the next. Furthermore, following an approach similar to that used in perturbation-based stochastic finite elements, this technique streamlines the process of probabilistic characterization of the instantaneous stress and the uniaxial compressive strength. Numerical examples show that the approach is accurate and highly efficient when considering random perturbations in both the underlying flaw population and the strain history in these brittle materials.


Articles with similar content:

STOCHASTIC DESIGN AND CONTROL IN RANDOM HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Phaedon-Stelios Koutsourelakis, Raphael Sternfels
Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman
A MULTISCALE APPROACH FOR THERMO-MECHANICAL SIMULATIONS OF LOADING COURSES IN CAST IRON BRAKE DISCS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
Stefan Schmid, Daniel Schneider, Michael Selzer, Christoph Herrmann, Britta Nestler
Multiscale Total Lagrangian Formulation for Modeling Dislocation-Induced Plastic Deformation in Polycrystalline Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
Jiun-Shyan Chen, Nasr M. Ghoniem, Xinwei Zhang, Shafigh Mehraeen
Three-Dimensional Reconstruction of Statistically Optimal Unit Cells of Multimodal Particulate Composites
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
D. Rypl, B. C. Collins, Karel Matous