Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2017020072
pages 99-119

CONCURRENT ATOMISTIC-CONTINUUM MODEL FOR DEVELOPING SELF-CONSISTENT ELASTIC CONSTITUTIVE MODELING OF CRYSTALLINE SOLIDS WITH CRACKS

Jiaxi Zhang
Department of Civil Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
Subhendu Chakraborty
Department of Civil Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
Somnath Ghosh
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218

RÉSUMÉ

Damage of materials inherently involves coupling of deformation and failure mechanisms at multiple length and time scales. This paper develops self-consistent elastic constitutive relations of crystalline materials containing atomistic scale cracks, from observations made in a concurrent multi-scale simulation system coupling atomistic and continuum domain models. The self-consistent constitutive model incorporates both nonlinearity and nonlocality to account for atomic level interactions and deformation mechanisms, especially near crack tips. Atomistic modeling in the concurrent model is done using molecular dynamics (MD), while the continuum modeling is done using a crystal elasticity finite element (FE) analysis code. The atomistic-continuum coupling is achieved by enforcing geometric compatibility and force equilibrium in an interface region. The constitutive model is calibrated by comparing with the results of MD predictions in the concurrent model. For validation, the crack tip stress field is investigated using both the coupled concurrent model and a FE model with the constitutive law. The self-consistent model exhibits excellent accuracy and enhanced efficiency in comparison with pure MD and concurrent model results.


Articles with similar content:

MULTIFIELD CONTINUUM SIMULATIONS FOR DAMAGED MATERIALS: A BAR WITH VOIDS
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Valerio Varano, Patrizia Trovalusci
Multiscale Model for Damage Analysis in Fiber-Reinforced Composites with Interfacial Debonding
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Somnath Ghosh, Prasanna Raghavan
A MULTISCALE COMPUTATIONAL METHOD FOR 2D ELASTOPLASTIC DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 2
Hongwu Zhang, Hui Liu
Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using Molecular Dynamics Simulations
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
Sangmin Lee, Veera Sundararaghavan
Symmetric Mesomechanical Model for Failure Analysis of Heterogeneous Materials
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
Caglar Oskay, Robert Crouch