Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2013005442
pages 227-237

A COARSE-GRAINED ATOMISTIC METHOD FOR 3D DYNAMIC FRACTURE SIMULATION

Qian Deng
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, 32611, USA
Youping Chen
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, 32611, USA

RÉSUMÉ

In this work, a new coarse-grained (CG) method is presented. The new method combines an atomistic formulation of balance equations and a modified finite element method. Through three numerical examples, we demonstrate that the new method is able to predict the dynamic fracture behavior of crystalline materials. First, the stress wave propagation is simulated through the CG method and the stress response is found to be identical with that of the corresponding atomic-level molecular dynamics (MD) simulation. Then, three-dimensional dynamic crack propagation in a notched thin film under tension is simulated through both CG and MD simulations. Simulation results show that not only the crack propagation paths but also the local and average stresses calculated from CG simulations agree well with that from the corresponding MD simulations. Most importantly, although a large number of degrees of freedoms have been eliminated, the CG models capture the atomic-scale phenomenon such as the dislocation emission and migration accompanied with the crack propagation. In addition, through CG simulations of a plate under impact lading, the CG method is demonstrated to be able to simulate both stable crack propagation problems and the fragmentations of materials under high-strain-rate dynamic loading.

RÉFÉRENCES

  1. Abraham, F. F., Dynamics of brittle fracture with variable elasticity. DOI: 10.1103/PhysRevLett.77.869

  2. Abraham, F. F., Brodbeck, D., Rudge, W. E., and Xu, X., A molecular dynamics investigation of rapid fracture mechanics. DOI: 10.1016/S0022-5096(96)00103-2

  3. Abraham, F. F., Brodbeck, D., Rudge, W. E., Broughton, J. Q., Schneiger, D., Land, B., Lifka, D., Gerner, J., Rosenkrantz, M., Skovira, J., and Gao, H., Ab initio dynamics of rapid fracture. DOI: 10.1088/0965-0393/6/5/010

  4. Abraham, F. F. and Gao, H., How fast can cracks propagate?. DOI: 10.1007/BF02538928

  5. Belytschko, T. and Xiao, S. P., Coupling method for continuum model with molecular model. DOI: 10.1615/IntJMultCompEng.v1.i1.100

  6. Broughton, J. Q., Abraham, F. F., Bernstein, N., and Kaxiras, E., Concurrent couple of length scales: Methodology application. DOI: 10.1103/PhysRevB.60.2391

  7. Buehler, M. J., Abraham, F. F., and Gao, H., Hyperelasticity governs dynamic fracture at a critical length scale. DOI: 10.1038/nature02096

  8. Buehler, M. J. and Gao, H., Dynamical fracture instabilities due to local hyperelasticity at crack tips. DOI: 10.1038/nature04408

  9. Chen, Y., Reformulation of microscopic balance equations for multiscale materials modeling. DOI: 10.1063/1.3103887

  10. Chen, Y., Local stress and heat flux in atomistic systems involving three-body forces. DOI: 10.1063/1.2166387

  11. Chen, Y. and Lee, J. D., Atomistic formulation of a multiscale theory for nano/microphysics.

  12. Chen, Y., Zimmerman, J., Krivtsov, A., and MacDowell, D. L., Assessment of atomistic coarse-graining methods. DOI: 10.1016/j.ijengsci.2011.03.018

  13. Deng, Q., Xiong, L., and Chen, Y., Coarse-graining atomistic dynamics of brittle fracture by finite element method. DOI: 10.1016/j.ijplas.2010.04.007

  14. Gumbsch, P., Zhou, S. J., and Holian, B. L., Molecular dynamics investigation of dynamic crack stability. DOI: 10.1103/PhysRevB.55.3445

  15. Holian, B. L. and Ravelo, R., Fracture simulations using large-scale molecular dynamics. DOI: 10.1103/PhysRevB.51.11275

  16. Kelly, A., Tyson, W. R., and Cottrell, A. H., Ductile and brittle crystals. DOI: 10.1080/14786436708220903

  17. Miller, R., Ortiz, M., Phillips, R., Shenoy, V. B., and Tadmor, E. B., Quasicontinuum models of fracture and plasticity. DOI: 10.1016/S0013-7944(98)00047-2

  18. Pashley, D. W., A study of the deformation and fracture of single-crystal gold film of high strength inside an electron microscope. DOI: 10.1098/rspa.1960.0064

  19. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. DOI: 10.1006/jcph.1995.1039

  20. Rice, J. R. and Thomson, R., Ductile versus brittle behavior of crystals. DOI: 10.1080/14786437408213555

  21. Tadmor, E. B., Ortiz, M., and Phillips, R., Quasicontinuum analysis of defects in solids. DOI: 10.1080/01418619608243000

  22. Xiong, L., Chen, Y., and Lee, J., Simulation of dislocation nucleation and motion in single crystal magnesium oxide by a field theory. DOI: 10.1016/j.commatsci.2007.06.018

  23. Xiong, L. and Chen, Y., Coarse-grained simulations of single-crystal silicon. DOI: 10.1088/0965-0393/17/3/035002

  24. Xiong, L. and Chen, Y., Multiscale modeling and simulation of single-crystal MgO through an atomistic field theory. DOI: 10.1016/j.ijsolstr.2008.11.012

  25. Xiong, L., Tucker, G., McDowell, D. L., and Chen, Y., Coarse-grained atomistic simulation of dislocations. DOI: 10.1016/j.jmps.2010.11.005

  26. Zhou, S. J., Lomdahl, P. S., Thomson, R., and Holian, B. L., Dynamic crack processes via molecular dynamics. DOI: 10.1103/PhysRevLett.76.2318


Articles with similar content:

Anisotropic Micromechanical Creep Damage Model for Composite Materials: A Reduced-Order Approach
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 2
Erez Gal, Jacob Fish
Multiscale Modeling of Fatigue for Ductile Materials
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 3
Caglar Oskay, Jacob Fish
MULTISCALE MODEL FOR DAMAGE-FLUID FLOW IN FRACTURED POROUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Mahdad Eghbalian, Richard Wan
DYNAMIC ANALYSIS OF POROUS MEDIA IN TIME DOMAIN USING A FINITE ELEMENT MODEL
Journal of Porous Media, Vol.13, 2010, issue 10
A. R. M. Gharabaghi, K. Abedi, M. Pasbani Khiavi
A MULTISCALE MICRO-CONTINUUM MODEL TO CAPTURE STRAIN LOCALIZATION IN COMPOSITE MATERIALS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
Thibaud Chevalier, Franck J. Vernerey