Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2016016021
pages 1-23

APPLICATION OF THE MULTISCALE FEM TO THE DETERMINATION OF MACROSCOPIC DEFORMATIONS CAUSED BY DISSOLUTION PRECIPITATION CREEP

Sandra Klinge
Institute of Mechanics, TU Dortmund University, 44227 Dortmund, Germany
Klaus Hackl
Ruhr University Bochum, Bochum, Germany

RÉSUMÉ

Our previous work proposes a micromechanical model for dissolution-precipitation creep, an elasto-viscoplastic process supposed to be one of the main reasons for the tectonic motion of earth plates in the subduction zone. While the model in its original form enables the simulation of polycrystals with a limited number of crystals, the topic of the present contribution is its extension to simulating structures on a much larger spatial scale. For this purpose, a homogenization technique known as the multiscale finite element method is used. Here, the behavior of a heterogeneous body is simulated by solving two boundary value problems: one related to the structural level and one related to the representative volume element. The coupling of scales is established by introducing the Hill macrohomogeneity condition requiring the equality of the macropower with the volume average of the micropower. The method allows the simulating of various tasks at both levels. The examples concerned with simulating the tension tests of a macroscopic plate with different types of the microstructure are presented.