Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019030655
pages 67-81

ON NONLOCAL LAM STRAIN GRADIENT MECHANICS OF ELASTIC RODS

Raffaele Barretta
Department of Structures for Engineering and Architecture, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
S. Ali Faghidian
Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
F. Marotti de Sciarra
Department of Structures for Engineering and Architecture, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
F. P. Pinnola
Department of Structures for Engineering and Architecture, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy

RÉSUMÉ

Numerous contributions can be found in the recent literature exploiting the nonlocal strain gradient model, introduced in consequence of unification of the differential relation (consequent but not equivalent to Eringen nonlocal integral law) and strain gradient elasticity. In the present paper, Eringen nonlocal integral and Lam modified strain gradient theories are coupled to formulate a nonlocal Lam strain gradient model of elasticity. Three scale parameters, describing nonlocality, dilatation, and stretch gradient, are utilized to significantly estimate size-dependent responses of 1D nanocontinua. The governing constitutive law is established via a variationally consistent approach, based on suitably selected test fields, projected for formulating well-posed static and dynamic problems of engineering interest. The nonlocal Lam strain gradient model, developed for nanorods, provides axial force fields in terms of integral convolutions involving elastic axial strain fields. The integral law, equivalent to an expedient set of constitutive differential and boundary conditions, is exploited for studying static and free vibration behaviors of simple nanostructural schemes. Exact analytical solutions are gotten in terms of nonlocal and gradient characteristic parameters. Validation of the proposed strategy is carried out by comparing the contributed results with those obtained by the modified nonlocal strain gradient theory.

RÉFÉRENCES

  1. Aifantis, E.C., On the Role of Gradients in the Localization of Deformation and Fracture, Int. J. Eng. Sci., vol. 3, pp. 1279-1299, 1992. DOI: 10.1016/0020-7225(92)90141-3.

  2. Aifantis, E.C., Update on a Class of Gradient Theories, Mech. Mater., vol. 35, pp. 259-280, 2003. DOI: 10.1016/S0167-6636(02)00278-8.

  3. Aifantis, E.C., On the Gradient Approach-Relation to Eringen's Nonlocal Theory, Int. J. Eng. Sci., vol. 49, pp. 1367-1377,2011. DOI: 10.1016/j.ijengsci.2011.03.016.

  4. Alotta, G., Di Paola, M., Failla, G., and Pinnola, F.P., On the Dynamics of Non-Local Fractional Viscoelastic Beams under Stochastic Agencies, Composites, PartB, vol. 137, pp. 102-110,2018. DOI: 10.1016/j.compositesb.2017.10.014.

  5. Apuzzo, A., Barretta, R., Luciano, R., Marotti de Sciarra, F., and Penna, R., Free Vibrations of Bernoulli-Euler Nano-Beams by the Stress-Driven Nonlocal Integral Model, Composites, Part B, vol. 123, pp. 105-111, 2017. DOI: 10.1016/j.compositesb.2017.03.057.

  6. Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., and Marotti de Sciarra, F., Free Vibrations of Elastic Beams by Modified Nonlocal Strain Gradient Theory, Int. J. Eng. Sci., vol. 133, pp. 99-108,2018. DOI: 10.1016/j.ijengsci.2018.09.002.

  7. Apuzzo, A., Barretta, R., Fabbrocino, F., Faghidian, S.A., Luciano, R., and Marotti de Sciarra, F., Axial and Torsional Free Vibrations of Elastic Nano-Beams by Stress-Driven Two-Phase Elasticity, J. Appl. Comput. Mech, vol. 5, no. 2, pp. 402-413,2019a. DOI: 10.22055/jacm.2018.26552.1338.

  8. Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., and Marotti de Sciarra, F., Nonlocal Strain Gradient Exact Solutions for Functionally Graded Inflected Nano-Beams, Composites, Part B, vol. 164, pp. 667-674, 2019b. DOI: 10.1016/j.compositesb.2018.12.112.

  9. Barretta, R. and Marotti de Sciarra, F., Constitutive Boundary Conditions for Nonlocal Strain Gradient Elastic Nano-Beams, Int. J.Eng. Sci., vol. 130, pp. 187-198,2018. DOI: 10.1016/j.ijengsci.2018.05.009.

  10. Barretta, R., Canadija, M., Feo, L., Luciano, R., Marotti de Sciarra, F., and Penna, R., Exact Solutions of Inflected Functionally Graded Nano-Beams in Integral Elasticity, Composites, Part B, vol. 142, pp. 273-286, 2018a. DOI: 10.1016/j.compositesb.2017.12.022.

  11. Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M., and Penna, R., Free Vibrations of FG Elastic Timoshenko Nano-Beams by Strain Gradient and Stress-Driven Nonlocal Models, Composites, Part B, vol. 154, pp. 20-32, 2018b. DOI: 10.1016/j.compositesb.2018.07.036.

  12. Barretta, R., Canadija, M., Luciano, R., and Marotti de Sciarra, F., Stress-Driven Modeling of Nonlocal Thermoelastic Behavior of Nano-Beams, Int. J. Eng. Sci, vol. 126, pp. 53-67,2018c. DOI: 10.1016/j.ijengsci.2018.02.012.

  13. Barretta, R., Diaco, M., Feo, L., Luciano, R., Marotti de Sciarra, F., and Penna, R., Stress-Driven Integral Elastic Theory for Torsion of Nano-Beams, Mech. Res. Commun, vol. 87, pp. 35-41,2018d. DOI: 10.1016/j.mechrescom.2017.11.004.

  14. Barretta, R., Luciano, R., Marotti de Sciarra, F., and Ruta, G., Stress-Driven Nonlocal Integral Model for Timoshenko Elastic Nano-Beams, Eur. J. Mech. A: Solids, vol. 72, pp. 275-286,2018e. DOI: 10.1016/j.euromechsol.2018.04.012.

  15. Barretta, R., Fazelzadeh, S.A., Feo, L., Ghavanloo, E., and Luciano, R., Nonlocal Inflected Nano-Beams: A Stress-Driven Approach of bi-Helmholtz Type, Compos. Struct, vol. 200, pp. 239-245,2018f. DOI: 10.1016/j.compstruct.2018.04.072.

  16. Barretta, R., Fabbrocino, F., Luciano, R., and Marotti de Sciarra, F., Closed-Form Solutions in Stress-Driven Two-Phase Integral Elasticity for Bending of Functionally Graded Nano-Beams, Physica E, vol. 97, pp. 13-30, 2018g. DOI: 10.1016/j.physe.2017.09.026.

  17. Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M., and Penna, R., Stress-Driven Two-Phase Integral Elasticity for Torsion ofNano-Beams, Composites, PartB, vol. 145, pp. 62-69,2018h. DOI: 10.1016/j.compositesb.2018.02.020.

  18. Barretta, R., Faghidian, S.A., and Luciano, R., Longitudinal Vibrations of Nanorods by Stress-Driven Integral Elasticity, Mech. Adv. Mater. Struct., 2019a. DOI: 10.1080/15376494.2018.1432806.

  19. Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F., and Medaglia, C.M., A Stress-Driven Local-Nonlocal Mixture Model for Timoshenko Nano-Beams, Composites, Part B, vol. 164, pp. 590-598, 2019b. DOI: 10.1016/j.compositesb.2019.01.012.

  20. Barretta, R., Faghidian, S.A., and Marotti de Sciarra, F., Stress-Driven Nonlocal Integral Elasticity for Axisymmetric Nano-Plates, Int. J Eng. Sci, vol. 136, pp. 38-52,2019c. DOI: 10.1016/j.ijengsci.2019.01.003.

  21. Barretta, R., Fabbrocino, F., Luciano, R., Marotti de Sciarra, F., and Ruta, G., Buckling Loads ofNano-Beams in Stress-Driven Nonlocal Elasticity, Mech. Adv. Mater. Struct., 2019d. DOI: 10.1080/15376494.2018.1501523.

  22. Barretta, R., Canadij a, M., and Marotti de Sciarra, F., Modified Nonlocal Strain Gradient Elasticity for Nano-Rods and Application to Carbon Nanotubes, Appl. Sci, vol. 9, p. 514,2019e. DOI: 10.3390/app9030514.

  23. Capecchi, D., Ruta, G., and Trovalusci, P., Voigt and Poincare's Mechanistic-Energetic Approaches to Linear Elasticity and Sug-gestions for Multiscale Modelling, Arch. Appl. Mech, vol. 81, pp. 1573-1584,2011. DOI: 10.1007/s00419-010-0502-z.

  24. Chakravarty, S., Das, S., Hadjesfandiari, A.R., and Dargush, G.F., Variational Inequalities for Heterogeneous Microstructures based in Couple-Stress Theory, Int. J. Multiscale Comput. Eng., vol. 16,no.2,pp. 101-119,2018. DOI: 10.1615/IntJMultCom-pEng.2018022854.

  25. Chung, E.T., Efendiev, Y., Leung, W.T., and Wheeler, M., Nonlinear Nonlocal MulticontinuaUpscaling Framework and Its Applications, Int. J. Multiscale Comput. Eng., vol. 16, no. 5, pp. 487-507,2018. DOI: 10.1615/IntJMultCompEng.2018027832.

  26. Eringen, A.C., On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves, J. Appl. Phys, vol. 54, pp. 4703-4710,1983. DOI: 10.1063/1.332803.

  27. Faghidian, S.A., On Non-Linear Flexure of Beams based on Non-Local Elasticity Theory, Int. J. Eng. Sci., vol. 124, pp. 49-63, 2018a. DOI: 10.1016/j.ijengsci.2017.12.002.

  28. Faghidian, S.A., Reissner Stationary Variational Principle for Nonlocal Strain Gradient Theory of Elasticity, Eur. J. Mech. A: Solids, vol. 70, pp. 115-126,2018b. DOI: 10.1016/j.euromechsol.2018.02.009.

  29. Faghidian, S.A., Integro-Differential Nonlocal Theory of Elasticity, Int. J. Eng. Sci, vol. 129, pp. 96-110, 2018c. DOI: 10.1016/j.ijengsci.2018.04.007.

  30. Failla, G., Sofi, A., and Zingales, M., A New Displacement-Based Framework for Non-Local Timoshenko Beams, Meccanica, vol. 50, no. 8, pp. 2103-2122,2015. DOI: 10.1007/s11012-015-0141-0.

  31. Farajpour, A., Ghayesh, M.H., and Farokhi, H., A Review on the Mechanics of Nanostructures, Int. J. Eng. Sci, vol. 133, pp. 231-263,2018. DOI: 10.1016/j.ijengsci.2018.09.006.

  32. Fernandes, R., El-Borgi, S., Mousavi, S.M., Reddy, J.N., and Mechmoum, A., Nonlinear Size-Dependent Longitudinal Vibration of Carbon Nanotubes Embedded in an Elastic Medium, Physica E, vol. 88, pp. 18-25,2017. DOI: 10.1016/j.physe.2016.11.007.

  33. Ghayesh, M.H. and Farajpour, A., A Review on the Mechanics of Functionally Graded Nanoscale and Microscale Structures, Int. J Eng. Sci, vol. 137, pp. 8-36,2019. DOI: 10.1016/j.ijengsci.2018.12.001.

  34. Kahrobaiyan, M.H., Asghari, M., and Ahmadian, M.T., Longitudinal Behavior of Strain Gradient Bars, Int. J. Eng. Sci, vols. 66-67,pp. 44-59,2013. DOI: 10.1016/j.ijengsci.2013.02.005.

  35. Kong, S., Zhou, S., Nie, Z., and Wang, K., Static and Dynamic Analysis of Micro Beams based on Strain Gradient Elasticity Theory, Int. J. Eng. Sci, vol. 47, pp. 487-498,2009. DOI: 10.1016/j.ijengsci.2008.08.008.

  36. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., and Tong, P., Experiments and Theory in Strain Gradient Elasticity, J. Mech. Phys. Solids, vol. 51, pp. 1477-1508,2003. DOI: 10.1016/S0022-5096(03)00053-X.

  37. Li, L., Hu, Y., and Li, X., Longitudinal Vibration of Size-Dependent Rods via Nonlocal Strain Gradient Theory, Int. J. Mech. Sci, vols. 115-116,pp. 135-144,2016. DOI: 10.1016/j.ijmecsci.2016.06.011.

  38. Li, D., Fish, J., and Yuan, Z.F., Two-Scale and Three-Scale Computational Continua Models of Composite Curved Beams, Int. J. Multiscale Comput. Eng., vol. 16, no. 6, pp. 527-554,2018. DOI: 10.1615/IntJMultCompEng.2018029231.

  39. Lim, C.W., Zhang, G., and Reddy, J.N., A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave Propagation, J. Mech. Phys. Solids, vol. 78, pp. 298-313,2015. DOI: 10.1016/j.jmps.2015.02.001.

  40. Marotti de Sciarra, F. andRusso, P., Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostruc-tures and Their Polymer Composites, Amsterdam: Elsevier, 2019. DOI: 10.1016/C2016-0-00081-5.

  41. Mahmoudpour, E., Hosseini-Hashemi, S., and Faghidian, S.A., Non-Linear Vibration Analysis of FG Nano-Beams Resting on Elastic Foundation in Thermal Environment Using Stress-Driven Nonlocal Integral Model, Appl. Math. Modell., vol. 57, pp. 302-315,2018. DOI: 10.1016/j.apm.2018.01.021.

  42. Mindlin, R.D., Second Gradient of Strain and Surface-Tension in Linear Elasticity, Int. J. Solids Struct., vol. 1, pp. 417-438,1965.

  43. DOI: 10.1016/0020-7683(65)90006-5 Ouakad, H.M. and Sedighi, H.M., Static Response and Free Vibration of MEMS Arches Assuming Out-of-Plane Actuation Pattern, Int. J. Non. Linear Mech, vol. 110, pp. 44-57,2019. DOI: 10.1016/j.ijnonlinmec.2018.12.011.

  44. Reccia, E., Leonetti, L., Trovalusci, P., and Cecchi, A., A Multiscale/Multidomain Model for the Failure Analysis of Masonry Walls: A Validation with a Combined FEM/DEM Approach, Int. J. Multiscale Comput. Eng., vol. 16, pp. 325-343,2018. DOI: 10.1615/IntJMultCompEng .2018026988.

  45. Reddy, J.N., Energy Principles Variational Methods in Applied Mechanics, Hoboken, NJ: Wiley, 2017.

  46. Romano, G. and Barretta, R., Nonlocal Elasticity in Nano-Beams: The Stress-Driven Integral Model, Int. J. Eng. Sci., vol. 115, pp. 14-27,2017a. DOI: 10.1016/j.ijengsci.2017.03.002.

  47. Romano, G. and Barretta, R., Stress-Driven versus Strain-Driven Nonlocal Integral Model for Elastic Nano-Beams, Composites, PartB, vol. 114, pp. 184-188,2017b. DOI: 10.1016/j.compositesb.2017.01.008.

  48. Romano, G., Barretta, R., Diaco, M., and Marotti de Sciarra, F., Constitutive Boundary Conditions and Paradoxes in Nonlocal Elastic Nano-Beams, Int. J. Mech. Sci. vol. 121, pp. 151-156,2017a. DOI: 10.1016/j.ijmecsci.2016.10.036.

  49. Romano, G., Barretta, R., and Diaco, M., On Nonlocal Integral Models for Elastic Nano-Beams, Int. J. Mech. Sci. vol. 131, pp. 490-499,2017b. DOI: 10.1016/j.ijmecsci.2017.07.013.

  50. Romano, G., Luciano, R., Barretta, R., and Diaco, M., Nonlocal Integral Elasticity in Nanostructures, Mixtures, Boundary Effects and Limit Behaviours, Continuum Mech. Thermodyn, vol. 30, pp. 641-655,2018. DOI: 10.1007/s00161-018-0631-0.

  51. Romano, G., Barretta, R., and Diaco, M., Iterative Methods for Nonlocal Elasticity Problems, Continuum Mech. Thermodyn, vol. 31, pp. 669-689,2019. DOI: 10.1007/s00161-018-0717-8.

  52. Sedighi, H.M., Koochi, A., Keivani, M., and Abadyan, M., Microstructure-Dependent Dynamic Behavior of Torsional Nano- Varactor, Measurement, vol. 111, pp. 114-121,2017. DOI: 10.1016/j.measurement.2017.07.011.

  53. She, G.-L., Ren, Y.-R., Yuan, F.-G., and Xiao, W.-S., On Vibrations of Porous Nanotubes, Int. J. Eng. Sci, vol. 125, pp. 23-35, 2018a. DOI: 10.1016/j.ijengsci.2017.12.009.

  54. She, G.-L., Yuan, F.-G., and Ren, Y.-R., On Wave Propagation of Porous Nanotubes, Int. J. Eng. Sci, vol. 130, pp. 62-74,2018b. DOI: 10.1016/j.ijengsci.2018.05.002.

  55. She, G.-L., Yan, K.-M., Zhang, Y.-L., Liu, H.-B., and Ren, Y.-R., Wave Propagation of Functionally Graded Porous Nanobeams based on Non-Local Strain Gradient Theory, Eur. Phys. J. Plus, vol. 133, p. 368,2018c. DOI: 10.1140/epjp/i2018-12196-5.

  56. Shirbani, M.M., Shishesaz, M., Sedighi, H.M., and Hajnayeb, A., Parametric Modeling of a Novel Longitudinal Vibration- Based Energy Harvester Using Magneto-Electro-Elastic Materials, Microsyst. Technol., vol. 23, pp. 5989-6004, 2017. DOI: 10.1007/s00542-017-3402-0.

  57. Shirbani, M.M., Sedighi, H.M., Ouakad, H.M., and Najar, F., Experimental and Mathematical Analysis of a Piezoelectrically Actuated Multilayered Imperfect Microbeam Subjected to Applied Electric Potential, Compos. Struct., vol. 184, pp. 950-960, 2018. DOI: 10.1016/j.compstruct.2017.10.062.

  58. Shishesaz, M., Shirbani, M.M., Sedighi, H.M., and Hajnayeb, A., Design and Analytical Modeling of Magneto-Electro-Mechanical Characteristics of a Novel Magneto-Electro-Elastic Vibration-Based Energy Harvesting System, J. Sound Vib., vol. 425, pp. 149-169,2018. DOI: 10.1016/j.jsv.2018.03.030.

  59. Trovalusci, P., Molecular Approaches for Multifield Continua: Origins and Current Developments, in Multiscale Modeling of Complex Materials: Phenomenological, Theoretical and Computational Aspects, T. Sadowski and P. Trovalusci, Eds., Berlin: Springer, vol. 556, pp. 211-278,2014. DOI: 10.1007/978-3-7091-1812-2.7.

  60. Trovalusci, P., Discrete to Scale-Dependent Continua for Complex Materials: A Generalized Voigt Approach Using the Virtual Power Equivalence, in Materials with Internal Structure, Springer Tracts in Mechanical Engineering, P. Trovalusci, Ed., Berlin: Springer, pp. 109-131,2015. DOI: 10.1007/978-3-319-21494-8JS.

  61. Trovalusci, P. and Pau, A., Derivation of Microstructured Continua from Lattice Systems via Principle of Virtual Works. The Case of Masonry-Like Materials as Micropolar, Second Gradient and Classical Continua, Acta Mech, vol. 225, pp. 157-177,2014. DOI: 10.1007/s00707-013-0936-9.

  62. Trovalusci, P., Varano, V., and Rega, G., A Generalized Continuum Formulation for Composite Materials and Wave Propagation in a Microcracked Bar, J. Appl. Mech, vol. 77, no. 6, 2010. DOI: 10.1115/1.4001639.

  63. Trovalusci, P., De Bellis, M.L., and Masiani, R., A Multiscale Description of Particle Composites: From Lattice Microstructures to Micropolar Continua, Composites, PartB, vol. 128, pp. 164-173,2017. DOI: 10.1016/j.compositesb.2017.06.015.

  64. Vallicotti, D., Sridhar, A., and Keip, M.-A., Variationally Consistent Computational Homogenization of Micro-Electro-Mechanics at Finite Deformations, Int. J. Multiscale Comput. Eng., vol. 16, no. 4, pp. 377-395, 2018. DOI: 10.1615/IntJMultCom-pEng.2018026858.

  65. Wu, Z., Ren, X., Ji, B., and Chen, W., Interlaminar Scale Effect of Multilayer Composite Microbeams based on a New Modified Couple-Stress Theory and the Hu-Washizu Variational Theorem, Int. J. Multiscale Comput. Eng., vol. 16, no. 3, pp. 209-229, 2018. DOI: 10.1615/IntJMultCompEng.2018026066.

  66. Xu, X.-J., Zheng, M.-L., and Wang, X.-C., On Vibrations of Nonlocal Rods: Boundary Conditions, Exact Solutions and Their Asymptotics, Int. J. Eng. Sci, vol. 119, pp. 217-231,2017. DOI: 10.1016/j.ijengsci.2017.06.025.

  67. Yang, S. and Liu, S., Free Vibration Property Analysis of Composite Laminated Microplates based in Different Hypotheses in Couple Stress Constitutive Equations, Int. J. Multiscale Comput. Eng., vol. 16, no. 2, pp. 163-186, 2018. DOI: 10.1615/IntJ-MultCompEng.2018026293.

  68. Zhu, X. and Li, L., Closed Form Solution for a Nonlocal Strain Gradient Rod in Tension, Int. J. Eng. Sci, vol. 119, pp. 16-28, 2017a. DOI: 10.1016/j.ijengsci.2017.06.019.

  69. Zhu, X. and Li, L., On Longitudinal Dynamics of Nanorods, Int. J. Eng. Sci., vol. 120, pp. 129-145, 2017b. DOI: 10.1016/j.ijengsci.2017.08.003.

  70. Zhu, X. and Li, L., Longitudinal and Torsional Vibrations of Size-Dependent Rods via Nonlocal Integral Elasticity, Int. J. Mech. Sci., vol. 133, pp. 639-650,2017c. DOI: 10.1016/j.ijmecsci.2017.09.030.


Articles with similar content:

Consistent Loading in Structural Reduction Procedures for Beam Models
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
D. Gadasi, Slava Krylov, Isaac Harari
A Quasi-Static Modeling Algorithm for Strip Structures in the Layered Anisotropic Medium
Telecommunications and Radio Engineering, Vol.55, 2001, issue 6-7
L. M. Karpukov
STRUCTURE OF GENERALIZED THEORIES OF ELASTICITY OF MEDIA WITH DEFECTIVE FIELDS AND OF GRADIENT THEORIES
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 1
C. Qi, Sergey A. Lurie, P. A. Belov
BUCKLING OF FGM TIMOSHENKO MICROBEAMS UNDER IN-PLANE THERMAL LOADING BASED ON THE MODIFIED STRAIN GRADIENT THEORY
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
M. Faghih Shojaei, S. Sahmani, R. Ansari, V. Mohammadi, Raheb Gholami
SIZE-DEPENDENT POSTBUCKLING OF ANNULAR NANOPLATES WITH DIFFERENT BOUNDARY CONDITIONS SUBJECTED TO THE AXISYMMETRIC RADIAL LOADING INCORPORATING SURFACE STRESS EFFECTS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
M. Faghih Shojaei, R. Ansari, V. Mohammadi, Raheb Gholami