Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i5.10
pages 381-393

Microstructure Evolution Modeling during and after Deformation in 304 Austenitic Stainless Steel through Cellular Automaton Approach

N. Yazdipour
Centre for Material and Fibre Innovation, Deakin University, Geelong, Victoria 3217, Australia
P. D. Hodgson
Centre for Material and Fibre Innovation, Deakin University, Geelong, Victoria 3217, Australia
C. H. J. Davies
Department of Materials Engineering, Monash University, Victoria 3800, Australia


A 2D cellular automaton approach was used to simulate microstructure evolution during and after hot deformation. Initial properties of the microstructure and dislocation density were used as input data to the cellular automaton model. The flow curve and final grain size were the output data for the dynamic recrystallization simulation, and softening kinetics curves were the output data of static and metadynamic recrystallization simulations. The model proposed in this work considered the effect of thermomechanical parameters (e.g., temperature and strain rate) on the nucleation and growth kinetics during dynamic recrystallization. The dynamic recrystallized microstructures at different strains, temperatures, and strain rates were used as input data for static and metadynamic recrystallization simulations. It was shown that the cellular automaton approach can model the final microstructure and flow curve successfully in dynamic recrystallization conditions. The postdeformation simulation results showed that the time for 50% recrystallization decreases with increasing strain for a given initial grain size and that dynamic recrystallization slows the postdeformation recrystallization kinetics compared to a model without dynamic recrystallization.


  1. Humphreys, F. J., and Hatherly, M., Recrystallization and Related Annealing Phenomena.

  2. Humphreys, F. J., A network model for recovery and recrystallisation.

  3. Raabe, D., Computational Materials Science.

  4. Chen, L. Q., and Wang, Y. Z., The continuum field approach to modeling microstructural evolution. DOI: 10.1007/BF03223259

  5. Janssens, K. G. F., Random grid, threedimensional, space-time coupled cellular automata for the simulation of recrystallization and grain growth. DOI: 10.1088/0965-0393/11/2/304

  6. Hesselbarth, H. W., Simulation of recrystallization by cellular automata. DOI: 10.1016/0956-7151(91)90183-2

  7. Davies, C. H. J., The effect of neighbourhood on the kinetics of a cellular automaton recrystallization model. DOI: 10.1016/0956-716X(95)00335-S

  8. Janssens, K. G. F., Continuum Scale Simulation of Engineering Materials: Fundamentals, Microstructures, Process Applications.

  9. Ding, R., and Guo, Z. X., Microstructural modeling of dynamic recrystallisation using an extended cellular automaton approach. DOI: 10.1016/S0927-0256(01)00211-7

  10. Najafizadeh, A., Jonas, J. J., Stewart, G. R., and Poliak, E. I., The strain dependence of postdynamic recrystallization in 304 H stainless steel. DOI: 10.1007/s11661-006-0132-9

  11. Jonas, J. J., Dynamic recrystallization — Scientific curiosity or industrial tool?. DOI: 10.1016/0921-5093(94)91028-6

  12. Takeuchi, S., and Argon, A. S., Review Steady state creep of single-phase crystalline matter at high temperature. DOI: 10.1007/BF00540888

  13. Dehghan-Manshadi, A., Barnett, M. R., and Hodgson, P. D., Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation. DOI: 10.1016/j.msea.2007.08.026

  14. Hodgson, P. D., Collinson, D. C., and Perrett, B., The use of hot torsion to simulate the thermomechanical processing of steel.

  15. Mecking, H., and Kocks, U. F., Kinetics of flow and strain-hardening. DOI: 10.1016/0001-6160(81)90112-7

  16. Ryan, N. D., and McQueen, H. J., Dynamic softening mechanism in 304 austenitic stainless steel. DOI: 10.1179/000844390795576058

  17. McQueen, H. J., and Ryan, N. D., Constitutive analysis in hot working. DOI: 10.1016/S0921-5093(01)01117-0

  18. Poliak, E. I., and Jonas, J. J., A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. DOI: 10.1016/1359-6454(95)00146-7

  19. Yazdipour, N., Davies, C. H. J., and Hodgson, P. D., Microstructural modeling of dynamic recrystallization using irregular cellular automata. DOI: 10.1016/j.commatsci.2008.04.027

  20. Stuwe, H. P., and Ortner, B., Recrystallization in hot working and creep.

  21. Ding, R., and Guo, Z. X., Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. DOI: 10.1016/S1359-6454(01)00233-6

  22. Fujita, N., Narushima, T., Iguchi, Y., and Ouchi, C., Grain refinement of as cast austenite by dynamic recrystallization in HSLA steels.

  23. Higginson, R. L., and Sellars, C. M., Worked Examples in Quantitative Metallography.

Articles with similar content:

International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
A. M. Dobrovat, Cristian Dascalu, S. Hall
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 6
Elisabeth Aigner, Roman Lackner, Josef Eberhardsteiner
Composite Grid Atomistic Continuum Method: An Adaptive Approach to Bridge Continuum with Atomistic Analysis
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 3
Mark S. Shephard, Catalin Picu, D. K. Datta
Asperity-Induced Episodic Percolation in Channels and Fractures
Journal of Porous Media, Vol.7, 2004, issue 3
Clifford K. Ho
Predicted Response of Multi-Ceramic Particles to Rapid Heating and Cooling
International Heat Transfer Conference 12, Vol.58, 2002, issue
Subrat Roychoudhary, Theodore L. Bergman