Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i5.50
pages 431-444

Investigating the Effect of Carbon Nanotube Defects on the Column and Shell Buckling of Carbon Nanotube-Polymer Composites Using Multiscale Modeling

A. Montazeri
Institute for Nano Science and Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
R. Naghdabadi
Institute for Nano Science and Technology, Sharif University of Technology, 14588-89694 Tehran, Iran; Mechanical Engineering Department, Sharif University of Technology, 14588-89694 Tehran, Iran


Carbon nanotube (CNT)-reinforced polymer composites have attracted great attention due to their exceptionally high strength. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. In this article, a new three-phase molecular structural mechanics/finite element (MSM/FE) multiscale model is used to study the effect of CNT vacancy defects on the stability of single-wall (SW) CNT-polymer composites. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones potential. Here, two of the most commonly used buckling regimes of CNTs, called column and shell buckling, are considered. To study the stability of the nanocomposites, the buckling onset strain is calculated for perfect and defected CNTs in the polymer nanocomposites. The results reveal that the presence of vacancy defects causes a decrease in the axial buckling strain of SWCNT-polymer composites. Meanwhile, this decrease is much more noticeable in the case of the column buckling mode. Also, it is shown that decreasing the CNT diameter causes a reduction in the onset buckling strain of defected nanocomposites. Finally, the role of the interphase layer on the stability behavior of these nanocomposites is discussed. It is concluded that the existence of a more compact layer than the polymer chains coated on the nanotube can enhance drastically the buckling behavior of these nanocomposites (about 35%).


  1. Iijima, S., Helical microtubules of graphite carbon. DOI: 10.1038/354056a0

  2. Lau, K. T., and Hui, D., The revolutionary creation of new advanced materials — carbon nanotube composites. DOI: 10.1016/S1359-8368(02)00012-4

  3. Ando, Y., Zhao, X. L., Inoue, S., and Iijima, S., Mass production of multiwalled carbon nanotubes by hydrogen arc discharge. DOI: 10.1016/S0022-0248(01)02248-5

  4. Choi, G. S., Cho, Y. S., Son, K. H., and Kim, D. J., Mass production of carbon nanotube using spin-coating of nanoparticles. DOI: 10.1016/S0167-9317(03)00028-5

  5. Chen, F., Zhang, X. B., Sun, Y. L., Cheng, J. P., and Li, Y., Continuous mass production of carbon nanotube using secondary fluidized bed.

  6. Jiang, H., Feng, X.-Q., Huang, Y., Hwang, K. C., and Wu, P. D., Defect nucleation in carbon nanotubes under tension and torsion: Stone-Wales transformation. DOI: 10.1016/j.cma.2003.09.025

  7. Yakobson, B. I., Campbell, M. P., Brabec, C. J., and Bernholc, J., High strain rate fracture and C-chain unraveling in carbon nanotubes. DOI: 10.1016/S0927-0256(97)00047-5

  8. Brenner, D. W., Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films.

  9. Yu, M.-F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., and Ruoff, R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. DOI: 10.1126/science.287.5453.637

  10. Mielke, S. L., Troya, D., Zhang, S., Li, J.-L., Xiao, S., Car, R., Ruoff, R. S., Schatz, G. C., and Belytschko, T., The role of vacancy defects and holes in the fracture of carbon nanotubes. DOI: 10.1016/j.cplett.2004.04.054

  11. Lu, Q., Influence of random defects on the mechanical behavior of carbon nanotubes through atomistic simulation.

  12. Iijima, S., Ichihashi, T., and Ando, Y., Pentagons, heptagons and negative curvature in graphite microtubule growth. DOI: 10.1038/356776a0

  13. Ebbesen, T. W., and Takada, T., Topological and sp<sup>3</sup> defect structures in nanotubes. DOI: 10.1016/0008-6223(95)00025-9

  14. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., and Iijima, S., Direct evidence for atomic defects in graphene layers. DOI: 10.1038/nature02817

  15. Zhu, Y., Yi, T., Zheng, B., and Cao, L., The interaction of C<sub>60</sub> fullerene and carbon nanotube with Ar ion beam. DOI: 10.1016/S0169-4332(98)00372-9

  16. Krasheninnikov, A. V., and Nordlund, K., Irradiation effects in carbon nanotubes.

  17. Xin, H., Han, Q., and Yao, X.-H., Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. DOI: 10.1016/j.carbon.2007.08.037

  18. Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K., and Kaski, K., Mechanical properties of carbon nanotubes with vacancies and related defects. DOI: 10.1103/PhysRevB.70.245416

  19. Li, C., and Chou, T. W., Multiscale modeling of compressive behavior of carbon nanotube/ polymer composites. DOI: 10.1016/j.compscitech.2006.01.013

  20. Li, C., and Chou, T. W., A structural mechanics approach for the analysis of carbon nanotubes. DOI: 10.1016/S0020-7683(03)00056-8

  21. Sakhaee-Pour, A., Ahmadian, M. T., and Naghdabadi, R., Vibrational analysis of singlelayered graphene sheets. DOI: 10.1088/0957-4484/19/8/085702

  22. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., A second generation force field for the simulation of proteins, nucleic acids and organic molecules. DOI: 10.1021/ja00124a002

  23. Yeh, I. C., and Hummer, G., Nucleic acid transport through carbon nanotube membranes. DOI: Nucleic acid transport through carbon nanotube membranes

  24. Valavala, P. K., and Odegard, G. M., Modeling techniques for determination of mechanical properties of polymer nanocomposites.

  25. Han, Y., and Elliott, J., Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites.

  26. Hu, N., Fukunaga, H., Lu, C., Kameyama, M., and Yan, B., Prediction of elastic properties of carbon nanotube reinforced composites. DOI: 10.1098/rspa.2004.1422

  27. Xiang, L. J., Jiao, K. J.,Wei, J., and Bing, Z., Tensile modulus of polymer nanocomposites. DOI: 10.1002/pen.11007

  28. Naghdabadi, R., and Hosseini Kordkheili, S. A., A finite element formulation for analysis of functionally graded plates and shells. DOI: 10.1007/s00419-004-0359-0

  29. Nie, S., and Basaran, C., A micromechanical model for effective elastic properties of particulate composites with imperfect interfacial bonds. DOI: A micromechanical model for effective elastic properties of particulate composites with imperfect interfacial bonds

  30. Saber-Samandari, S., and Afaghi-Khatibi, A., The effect of interphase on the elastic modulus of polymer based nanocomposites. DOI: 10.4028/www.scientific.net/KEM.312.199

  31. Saber-Samandari, S., and Afaghi-Khatibi, A., Evaluation of elastic modulus of polymer matrix nanocomposites. DOI: 10.1002/pc.20322

  32. Timoshenko, S. P., and Gere, J. M., Theory of Elastic Stability.

  33. Sadeghi, M., Ozmaeian, M., and Naghdabadi, R., Stability analysis of carbon nanotubes under electric fields and compressive loading. DOI: 10.1088/0022-3727/41/20/205411

  34. Yakobson, B. I., Brabec, C. J., and Bernholc, J., Nanomechanics of carbon tubes: Instability beyond linear response. DOI: 10.1103/PhysRevLett.76.2511

  35. Wang, Y., Wang, X.-X., Ni, X.-G., and Wu, H., Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes. DOI: 10.1016/j.commatsci.2004.08.005

  36. Bower, C., Rosen, R., Jin, L., Han, J., and Zhou, O., Deformation of carbon nanotubes in nanotube-polymer composites. DOI: 10.1063/1.123330

  37. Pantano, A., Boyce, M. C., and Parks, D. M., Nonlinear structural mechanics based modeling of carbon nanotube deformation. DOI: 10.1103/PhysRevLett.91.145504

  38. Zhang, Y. Y., Tan, V. B. C., and Wang, C. M., Effect of strain rate on the buckling behavior of single- and double-walled carbon nanotubes. DOI: 10.1016/j.carbon.2006.10.020

Articles with similar content:

Analytical and Numerical Study of the Size Effect on the Failure Response of Hierarchical Structures
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 4
J. F. Labuz, Yong Gan, Zhen Chen
Mahmood A. Yaghoubi, Afrasiab Raisi, Leila Choobineh
Nanoscience and Technology: An International Journal, Vol.10, 2019, issue 4
V. I. Zhornik, P. A. Vityaz, Vladimir T. Senyut
Composites: Mechanics, Computations, Applications: An International Journal, Vol.9, 2018, issue 2
Victor V. Tcherdyntsev, L. K. Olifirov, S. D. Kaloshkin, A. A. Stepashkin, Dilyus I. Chukov
Deformation and Stability of Copper Nanowires under Bending
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 3
Hongwu Zhang, Shan Jiang, Yonggang Zheng, Zhen Chen