Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

The Stability and Mechanical Properties of Boron Nanotubes Explored through Density Functional Calculations

Volume 8, Numéro 2, 2010, pp. 245-250
DOI: 10.1615/IntJMultCompEng.v8.i2.90
Get accessGet access

RÉSUMÉ

Boron nanotubes are attractive because of their novel electronic properties due to the presence of multicenter bonds. Their thermal stability and mechanical properties are important issues in nanodevice applications and thus require intensive study. Using first-principles density functional calculations, we investigated the thermal stability and mechanical properties of armchair single-walled boron nanotubes with diameters ranging from 0.85 to 1.40 nm. We studied the geometry changes of boron nanotubes with temperature variations from 300 to 1200 K. By analyzing shape change, we found that boron nanotubes are stable only below 1000 K. We also extended our study to their mechanical response. Based on the calculated strain energy, we obtained Young's modulus and Poisson's ratio values in the ranges of 380.65-399.44 GPa and 0.184-0.195, respectively. Both the strain and strain energy increased as the temperature increased.

RÉFÉRENCES
  1. Baughman, R. H., Zakhidow, A. A., and de Heer, W. A., Carbon nanotubes-The route toward applications. DOI: 10.1126/science.1060928

  2. Boustani, I., Rubio, A., and Alonso, J., Ab initio study of B<sub>32</sub> clusters: Competition between, quasiplanar and tubular isomers spherical. DOI: 10.1016/S0009-2614(99)00767-8

  3. Chacko, S., Kanhere, D. G., and Boustani, I., Ab initio density functional investigation of B<sub>24</sub> clusters: Rings, tubes, planes, and cages. DOI: 10.1103/PhysRevB.68.035414

  4. Chopra, N. G. and Zettl, A., Measurement of the elastic modulus of a multi-wall boron nitride nanotube. DOI: 10.1016/S0038-1098(97)10125-9

  5. Ciuparu, D., Klie, R. F., Zhu, Y., and Pfefferle, L., Synthesis of pure boron single-wall nanotubes. DOI: 10.1021/jp049301b

  6. De Crescenzi, M., Castrucci, P., Scarselli, M., Diociaiuti, M., Chaudhari, P. S., Balasubramanian, C., Bhave, T. M., and Bhoraskar, S. V., Experimental imaging of silicon nanotubes. DOI: 10.1063/1.1943497

  7. Hernandez, E., Goze, C., Bernier, P., and Rubio, A., Elastic properties of single-wall nanotubes. DOI: 10.1007/s003390050890

  8. Iijima, S., Helical microtubules of graphitic carbon. DOI: doi:10.1038/354056a0

  9. Kiran, B., Bulusu, S., Zhai, H. J., Yoo, S., Zeng, X. C., and Wang, L. S., Planar-to-tubular structural transition in boron clusters: B<sub>20</sub> as the embryo of single-walled boron nanotubes. DOI: 10.1073/pnas.0408132102

  10. Li, Y., Wang, J., Deng, Z., Wu, Y., Sun, X., Yu, D., and Yang, P., Bismuth nanotubes: A rational low-temperature synthetic route. DOI: 10.1021/ja016435j

  11. Lu, J. P., Elastic properties of carbon nanotubes and nano- pores.

  12. Miyamoto, Y., Rubio, A., Louie, S. G., and Cohen, M. L., Electronic properties of tubule forms of hexagonal BC<sub>3</sub>. DOI: 10.1103/PhysRevB.50.18360

  13. Miyamoto, Y., Cohen, M. L., and Louie, S. G., Theoretical investigation of graphitic carbon nitride and possible tubule forms. DOI: 10.1016/S0038-1098(97)00025-2

  14. Ordejon, P., Artacho, E., and Soler, J. M., Self-consistent order-N density-functional calculations for very large systems. DOI: 10.1103/PhysRevB.53.R10441

  15. Quandt, A. and Boustani, I., Boron nanotubes. DOI: 10.1002/cphc.200500205

  16. Rubio, A., Corkill, J. L., and Cohen, M. L., Theory of graphitic boron nitride nanotubes. DOI: 10.1103/PhysRevB.49.5081

  17. Sanchez-Portal, D., Ordejon, P., Artacho, E., and Soler, J. M., Density-functional method for very large systems with LCAO basis sets. DOI: 10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V

  18. Seifert, G., Kohler, Th., Urbassek, H. M., Hern and ez, E., and Frauenheim. DOI: 10.1103/PhysRevB.63.193409

  19. Singh, A. K., Sadrzadeh, A., and Yakobson, B. I., Probing properties of boron &alpha;-tubes by ab initio calculations. DOI: 10.1021/nl073295o

  20. Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., The SIESTA method for ab initio order-N materials simulation. DOI: 10.1088/0953-8984/14/11/302

  21. Szwacki, N. G., Sadrzadeh, A., and Yakobson, B. I., B80 Fullerene: An ab initio prediction of geometry,stability, and electronic structure. DOI: 10.1103/PhysRevLett.98.166804

  22. Tibbetts, G. G., Why are carbon filaments tubular?. DOI: 10.1016/0022-0248(84)90163-5

  23. Wong, E. W., Sheehan, P. E., and Lieber, C. M., Nanobeam mechanics, strength, and toughness of nanorods and nanotubes: Elasticity. DOI: 10.1126/science.277.5334.1971

  24. Yakobson, B. I., Brabec, C. J., and Bernholc, J., Nanomechanics of carbon tubes: Instabilities beyond linear response. DOI: 10.1103/PhysRevLett.76.2511

  25. Yang, X. B., Ding, Y., and Ni, J., Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. DOI: 10.1103/PhysRevB.77.041402

  26. Zhai, H. J., Kiran, B., Li, J., and Wang, L. S., Hydrocarbon analogues of boron clusters- Planarity, aromaticity and antiaromaticity. DOI: 10.1038/nmat1012

CITÉ PAR
  1. Pan Li-Jun, Jia Yu, Sun Qiang, Hu Xing, Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study, Chinese Physics Letters, 28, 8, 2011. Crossref

  2. LI DENGFENG, WANG ZHIGUO, TENSILE BEHAVIOR OF AMORPHOUS LAYER COATED SILICON CARBIDE NANOWIRES: AN ATOMIC SIMULATION, Modern Physics Letters B, 25, 05, 2011. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain