Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i2.60
pages 207-219

Analysis of Multi-Transmitting Formula for Absorbing Boundary Conditions

Xianming Wang
Zhou Peiyuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
Shaoqiang Tang
Center for Applied Physics and Technology, and LTCS, College of Engineering, Peking University, Beijing 100871; Zhou Peiyuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China

RÉSUMÉ

In this paper, we analyze the multi-transmitting formula (MTF) proposed by Liao andWong (1984). From the computed reflection coefficients for the fully discrete MTF boundary conditions, we suggest choices for the artificial wave propagation speed which are different from Liao’s original choice. Theoretical and numerical studies for various incidence angles demonstrate that the suggested choices effectively reduce spurious reflections.

RÉFÉRENCES

  1. Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves. DOI: 10.1006/jcph.1994.1159

  2. Cai, W., de Koning, M., Bulatov, V. V., and Yip, S., Minimizing boundary reflections in coupled-domain simulations. DOI: 10.1103/PhysRevLett.85.3213

  3. Clayton, R. and Engquist, B., Absorbing boundary conditions for acoustic and elastic wave equations.

  4. Dreher, M. and Tang, S., Time history interfacial conditions in multiscale computations of Lattice oscillations. DOI: 10.1007/s00466-007-0224-4

  5. Engquist, B. and Majda, A., Absorbing boundary conditions for the numerical simulation of waves. DOI: 10.1090/S0025-5718-1977-0436612-4

  6. Engquist, B. and Majda, A., Radiation boundary conditions for acoustic and elastic calculations. DOI: 10.1002/cpa.3160320303

  7. Givoli, D., Non-reflecting boundary conditions: A review. DOI: 10.1016/j.wavemoti.2003.12.004

  8. Givoli, D., Numerical Methods for Problems in Infinite Domains.

  9. Givoli, D. and Keller, J. B., Non-reflecting boundary conditions for elastic waves. DOI: 10.1016/0165-2125(90)90043-4

  10. Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves. DOI: 10.1017/S0962492900002890

  11. Hagstrom, T., Mar-Or, A., and Givoli, D., High-order local non-reflecting boundary conditions for the wave equation: Extensions and improvements. DOI: 10.1016/j.jcp.2007.11.040

  12. Higdon, R. L., Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation. DOI: 10.2307/2008166

  13. Higdon, R. L., Absorbing boundary conditions for the wave equation.

  14. Higdon, R. L., Boundary conditions for elastic wave propagation. DOI: 10.1137/0727049

  15. Keys, R. G., Absorbing boundary conditions for acoustic media. DOI: 10.1190/1.1441969

  16. Keller, J. B. and Givoli, D., Exact non-reflecting boundary conditions. DOI: 10.1016/0021-9991(89)90041-7

  17. Komornik, V., Rapid boundary stabilization of the wave equation. DOI: 10.1137/0329011

  18. Liao, Z. P., Extrapolation non-reflecting boundary conditions. DOI: 10.1016/0165-2125(96)00010-8

  19. Liao, Z. P., Introduction to Wave Motion Theories in Engineering (2nd ed).

  20. Liao, Z. P. and Wong, H. L., A transmitting boundary for the numerical simulation of elastic wave propagation. DOI: 10.1016/0261-7277(84)90033-0

  21. Liao, Z. P., Wong, H. L., Yang, B. P., and Yuan, Y. F., A transmitting boundary for transient wave analysis.

  22. Liu, W. K., Karpov, E. G., and Park, H. S., Nano-Mechanics and Materials: Theory.

  23. Moore, T. G., Blaschak, J. G., Taflove, A., and Kreigsmann, G. A., Theory and application of radiation boundary operators. DOI: 10.1109/8.14402

  24. Qian, D., Wagner, G. J., and Liu, W. K., A multiscale projection method for the analysis of carbon nanotubes. DOI: 10.1016/j.cma.2003.12.016

  25. Reynolds, A. C., Boundary conditions for the numerical solution of wave propagation problems. DOI: 10.1190/1.1440881

  26. Taflove, A. and Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd ed).

  27. Tang, S., A Finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids. DOI: 10.1016/j.jcp.2007.12.012

  28. Trefethen, L. N., Group velocity in finite difference schemes. DOI: 10.1137/1024038

  29. Trefethen, L. N. and Halpern, L., Well-posedness of one-way wave equations and absorbing boundary conditions. DOI: 10.2307/2008165

  30. Tsynkov, S. V., Numerical solution of problems on unbounded domains:A review. DOI: 10.1016/S0168-9274(98)00025-7

  31. Tsynkov, S. V., Turkel, E., and Abarbanel, S., External flow computations using global boundary conditions. DOI: 10.2514/3.13130

  32. Yang, D., Wang, S., Zhang, Z., and Teng, J., n-Times absorbing boundary conditions for compact finite-difference modeling of acoustic and elastic wave propagation in the 2D TI medium. DOI: 10.1785/0120020224