Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2012002827
pages 343-360

A NEW CRACK TIP ENRICHMENT FUNCTION IN THE EXTENDED FINITE ELEMENT METHOD FOR GENERAL INELASTIC MATERIALS

Xia Liu
Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027, USA
Haim Waisman
Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027, USA
Jacob Fish
Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027, USA

RÉSUMÉ

Branch functions are commonly used as crack tip enrichments in the extended finite element method (XFEM). Typically, these are four functions derived from linear elasticity and added as additional degrees of freedom. However, for general inelastic material behavior, where the analytical solution and the order of singularity are unknown, Branch functions are typically not used, and only the Heaviside function is employed. This, however, may introduce numerical error, such as inconsistency in the position of the crack tip. In this paper we propose a special construction of a Ramp function as tip enrichment, which may alleviate some of the problems associated with the Heaviside function when applied to general inelastic materials, especially ones with no analytical solutions available. The idea is to linearly ramp down the displacement jump on the opposite sides of the crack to the actual crack tip, which may stop the crack at any point within an element, employing only one enrichment function. Moreover, a material length scale that controls the slope of the ramping is introduced to allow for better flexibility in modeling general materials. Numerical examples for ideal and hardening elastoplastic and elastoviscoplastic materials are given, and the convergence studies show that a better performance is obtained by the proposed method in comparison with the Heaviside function. Nevertheless, when analytical functions, such as the Hutchinson-Rice-Rosengren (HRR) fields, do exist (for very limited material models), they indeed perform better than the proposed Ramp function. However, they also employ more degrees of freedom per node and hence are more expensive.

RÉFÉRENCES

  1. Aragón, A., Duarte, C., and Geubelle, P., Generalized finite element enrichment functions for discontinuous gradient fields. DOI: 10.1002/nme.2772

  2. Bažant, Z. and Kazemi, M., Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length. DOI: 10.1111/j.1151-2916.1990.tb05233.x

  3. Belytschko, T. and Black, T., Elastic crack growth in finite elements with minimal remeshing. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

  4. Belytschko, T., Chen, H., Xu, J., and Zi, G., Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. DOI: 10.1002/nme.941

  5. Belytschko, T. and Gracie, R., On xfem applications to dislocations and interfaces. DOI: 10.1016/j.ijplas.2007.03.003

  6. Belytschko, T., Mo&#235;s, N., Usui, S., and Parimi, C., Arbitrary discontinuities in finite elements. DOI: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M

  7. Belytschko, T., Xiao, S., and Parimi, C., Topology optimization with implicit functions and regularization. DOI: 10.1002/nme.824

  8. Bordas, S. and Moran, B., Enriched finite elements and level sets for damage tolerance assessment of complex structures. DOI: 10.1016/j.engfracmech.2006.01.006

  9. Carka, D. and Landis, C., On the path-dependence of the j-integral near a stationary crack in an elastic-plastic material. DOI: 10.1115/1.4001748

  10. Chessa, J. and Belytschko, T., An extended finite element method for two-phase fluids. DOI: 10.1115/1.1526599

  11. Chessa, J., Smolinski, P., and Belytschko, T., The extended finite element method (xfem) for solidification problems. DOI: 10.1002/nme.386

  12. Daux, C., Mo&#235;s, N., Dolbow, J., Sukumar, N., and Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method. DOI: 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L

  13. de Borst, R., Remmers, J., and Needleman, A., Mesh-independent discrete numerical representations of cohesive-zone models. DOI: 10.1016/j.engfracmech.2005.05.007

  14. Dolbow, J., Mo&#235;s, N., and Belytschko, T., Discontinuous enrichment in finite element with a partition of unity method. DOI: 10.1016/S0168-874X(00)00035-4

  15. Duarte, C., Babu&#353;ka, I., and Oden, J., Generalized finite element methods for three-dimensional structural mechanics problems. DOI: 10.1016/S0045-7949(99)00211-4

  16. Dugdale, D., Yielding of steel sheets containing slits. DOI: 10.1016/0022-5096(60)90013-2

  17. Dunne, F. and Petrinic, N., Introduction to Computational Plasticity.

  18. Elguedj, T., Gravouil, A., and Combescure, A., Appropriate extended functions for x-fem simulation of plastic fracture mechanics. DOI: 10.1016/j.cma.2005.02.007

  19. Fries, T., A corrected xfem approximation without problems in blending elements. DOI: 10.1002/nme.2259

  20. Fries, T. and Belytschko, T., The intrinsic xfem: a method for arbitrary discontinuities without additional unknowns. DOI: 10.1002/nme.1761

  21. Gracie, R., Ventura, G., and Belytschko, T., A new fast finite element method for dislocations based on interior discontinuities. DOI: 10.1002/nme.1896

  22. Guest, J., Pr&#233;vost, J., and Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projections functions. DOI: 10.1002/nme.1064

  23. Hansbo, A. and Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics. DOI: 10.1016/j.cma.2003.12.041

  24. Hutchinson, J., Singular behaviour at the end of a tensile crack in a hardening material. DOI: 10.1016/0022-5096(68)90014-8

  25. Huynh, D. and Belytschko, T., The extended finite element method for fracture in composite materials. DOI: 10.1002/nme.2411

  26. Irwin, G., Plastic zone near a crack and fracture toughness.

  27. Menouillard, T., Song, J., Duan, Q., and Belytschko, T., Time dependent crack tip enrichment for dynamic crack propagation. DOI: 10.1007/s10704-009-9405-9

  28. Mo&#235;s, N., Cloirec, M., Cartraud, P., and Remacle, J.-F., A computational approach to handle complex microstructure geometries. DOI: 10.1016/S0045-7825(03)00346-3

  29. Mo&#235;s, N., Dolbow, J., and Belytschko, T., A finite element method for crack growth without remeshing. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

  30. Nagashima, T. and Miura, N., Elastic-plastic fracture analysis for surface cracks using X-FEM.

  31. Rabinovich, D., Givoli, D., and Vigdergauz, S., XFEM-based crack detection scheme using a genetic algorithm. DOI: 10.1002/nme.1975

  32. Rice, J., A path independent integral and the approximate analysis of strain concentration by notches and cracks. DOI: 10.1115/1.3601206

  33. Rice, J. and Rosengren, G., Plane strain deformation near a crack tip in a power-law hardening material. DOI: 10.1016/0022-5096(68)90013-6

  34. Samaniego, E. and Belytschko, T., Continuum-discontinuum modeling of shear bands. DOI: 10.1002/nme.1256

  35. Shi, J., Lua, J., Waisman, H., Liu, P., Belytschko, T., Sukumar, N., and Liang, Y, X-FEM toolkit for automated crack onset and growth prediction.

  36. Simo, J. and Hughes, T., Comput. Inelasticity.

  37. Song, J., Areias, P., and Belytschko, T., A method for dynamic crack and shear band propagation with phantom nodes. DOI: 10.1002/nme.1652

  38. Strouboulis, T., Babu&#353;ka, I., and Copps, K., The design and analysis of the generalized finite element method. DOI: 10.1016/S0045-7825(99)00072-9

  39. Sukumar, N., Chopp, D., Mo&#235;s, N., and Belytschko, T., Modeling holes and inclusions by level sets in the extended finite element method. DOI: 10.1016/S0045-7825(01)00215-8

  40. Ventura, G., Gracie, R., and Belytschko, T., Fast integration and weight function blending in the extended finite element method. DOI: 10.1002/nme.2387

  41. Waisman, H. and Belytschko, T., Parametric enrichment adaptivity by the extended finite element method. DOI: 10.1002/nme.2137

  42. Waisman, H., Chatzi, E., and Smyth, A., Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. DOI: 10.1002/nme.2766

  43. Wang, W., Fan, T., and Zhang, L., Analytic study on angular fields of hrr solution. DOI: 10.1007/BF02879051


Articles with similar content:

Multiscale Modeling for Planar Lattice Microstructures with Structural Elements
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Ken Ooue, Isao Saiki, Kenjiro Terada, Akinori Nakajima
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt
DETERMINING A POINT HEAT SOURCE POSITION IN A 2D DOMAIN USING THE BI-OBJECTIVE ANT COLONY OPTIMIZATION
Heat Transfer Research, Vol.47, 2016, issue 11
Mei Lu, Bohan Li
Calibration of a Nonlinear Elastic Composite With Goal-Oriented Error Control
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 3
Hakan Johansson, Kenneth Runesson, Fredrik Larsson
Iterative Algorithms for Computing the Averaged Response of Nonlinear Composites under Stress-Controlled Loadings
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Takahiro Yamada