Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal for Multiscale Computational Engineering
Facteur d'impact: 1.016 Facteur d'impact sur 5 ans: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Imprimer: 1543-1649
ISSN En ligne: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v1.i23.70
16 pages

Multibody Mass Matrix Sensitivity Analysis Using Spatial Operators

Abhinandan Jain
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109
Guillermo Rodriguez
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

RÉSUMÉ

This article discusses an approach for sensitivity analysis of multibody dynamics using spatial operators. The spatial operators are rooted in the function space approach to estimation theory developed in the decades following the introduction of the Kalman filter and used extensively to develop a range of results in multibody dynamics. The operators provide a mathematical framework for studying a wide range of analytical and computational problems associated with multibody system dynamics. This article focuses on the computation of the sensitivity of the system mass matrix for tree-topology multibody systems and develops an analytical expression for the same using spatial operators. As an application example, mass matrix sensitivity is used to derive analytical expressions based on composite body inertias for the Christoffel symbols associated with the equations of motion.


Articles with similar content:

IDENTIFICATION IN STOCHASTIC THERMODIFFUSION PROBLEMS
Heat Transfer Research, Vol.48, 2017, issue 1
Andrzej Sluzalec
A LINEAR PROGRAMMING MODEL FOR BOTTLENECK IDENTIFICATION IN CELLULAR MANUFACTURING
Hybrid Methods in Engineering, Vol.3, 2001, issue 1
R. Y. Qassim, L. G. Azevedo Filho
Filtration in Multirate Discrete Dynamic Systems with a Priori Uncertain Probability Properties of Perturbations
Journal of Automation and Information Sciences, Vol.32, 2000, issue 11
Alexander S. Kopychko, Vladimir N. Podladchikov
Projection-iteration Realization on the Newton−Kantorovich Method for Solving Nonlinear Integral Equations
Journal of Automation and Information Sciences, Vol.44, 2012, issue 1
Lyudmila L. Hart, N.V. Polyakov
Limit Analysis of One Class of Optimal Control Problems in Thick Singular Junctions
Journal of Automation and Information Sciences, Vol.37, 2005, issue 1
Peter I. Kogut, Taras A. Mel'nik