Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 0.7

ISSN Imprimer: 1940-2503
ISSN En ligne: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2018020672
pages 307-320

DOUBLE DIFFUSIVE NATURAL CONVECTION IN A SQUARE ENCLOSURE FILLED WITH COPPER-WATER NANOFLUID INDUCED BY OPPOSITE TEMPERATURE AND CONCENTRATION GRADIENTS

Natesan Saritha
School of Mechanical Engineering, VIT University, Vellore, India
A. Senthil Kumar
School of Mechanical Engineering, VIT University, Vellore, India

RÉSUMÉ

Double-diffusive natural convection in a Cu–water nanofluid-filled square enclosure neglecting the effect of Soret and Dufour is studied numerically. The horizontal walls are well insulated and impermeable, while the vertical walls are imposed to opposite temperature and concentration gradients. Brinkman, Maxwell–Garnett models are used to determine the effective dynamic viscosity and thermal conductivity of Cu–water nanofluid, respectively. A computational code based on the SIMPLE algorithm is used to solve the system of conservation equations of mass, momentum, energy, and species. Simulations are performed using the thermal Rayleigh number, the buoyancy ratio, and the solid volume fraction as independent variables. The numerical results are studied in terms of velocity profiles, streamlines, isotherms, iso-concentrations, local and average Nusselt numbers, and Sherwood number for a wide range of Rayleigh number Ra = 104–105, the buoyancy ratio N = 0.1–10 and the solid volume fraction (0 ≤ φ ≤ 0.1) with Prandtl number Pr = 5.0 and Lewis number Le = 1. It is found that utilizing Cu–water nanofluid enhances the heat transfer sufficiently while the enhancement is marginal for the mass transfer. It is also observed that the fluid flow behavior increases with increasing Rayleigh number but decreases with increasing solid volume fraction.


Articles with similar content:

HEAT TRANSFER ENHANCEMENT OF UNIFORMLY/LINEARLY HEATED SIDE WALL IN A SQUARE ENCLOSURE UTILIZING ALUMINA−WATER NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 3
Senthil Kumar Arumugam, Sathiyamoorthy Murugesan, Ali J. Chamkha, Saritha Natesan
NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum
NATURAL CONVECTION FLOWS IN A POROUS NANOFLUID-FILLED TRIANGULAR ENCLOSURE WITH WAVY LEFT WALL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Saurabh Bhardwaj, Gautam Biswas, Amaresh Dalal
Effectiveness and Economic for Using Ag-Nanoparticles in Porous Media inside Enclosure with Present Heat Generation and Magnetic Field under Natural Convection Conditions
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 6
Ali Meerali Jasim Al-Zamily
NUMERICAL SIMULATION OF DOUBLE-DIFFUSIVE MIXED CONVECTION IN A HORIZONTAL ANNULUS UNDER TANGENTIAL MAGNETIC FIELD, WITH A ROTATING OUTER CYLINDER
Heat Transfer Research, Vol.49, 2018, issue 14
Goodarz Ahmadi, Bengt Sunden, Mehdi Bidabadi, Alireza Khoeini Poorfar, Vahid Bordbar