Abonnement à la biblothèque: Guest
Computational Thermal Sciences: An International Journal

Publication de 6  numéros par an

ISSN Imprimer: 1940-2503

ISSN En ligne: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

LAMINAR AND TURBULENT OPPOSING MIXED-CONVECTIVE FLOW OVER A VERTICAL PLATE WITH A UNIFORM SURFACE HEAT FLUX

Volume 7, Numéro 2, 2015, pp. 157-165
DOI: 10.1615/ComputThermalScien.2015012288
Get accessGet access

RÉSUMÉ

A numerical study of mixed natural and forced convective flow over a thin vertical flat plate which has a uniform surface heat flux has been undertaken. Attention has been restricted to the case where the buoyancy forces act in the opposite direction to the forced flow, i.e., to opposing mixed-convective flow. Laminar, transitional, and turbulent flow situations have been considered and the development of unsteady flow has been allowed for. The forced flow has been assumed to be steady and the Boussinesq approach has been used. The solution has been obtained by numerically solving the governing equations using the commercial CFD solver, ANSYS FLUENT© . The k-epsilon turbulence model with the full effect of buoyancy forces accounted for and with standard wall functions has been used in obtaining the solutions. The heat-transfer rate from the surface of the plate has been expressed in terms of the mean Nusselt number based on the overall plate length and the difference between the overall mean plate temperature and the undisturbed fluid temperature. This Nusselt number depends on the values of the heat flux Rayleigh number based on the plate length, the Reynolds number based on the plate length, and the Prandtl number. Results have been obtained for a Prandtl number of 0.74, i.e., essentially for the value for air. The conditions under which the flow can be assumed to be purely forced convective and under which the flow can be assumed to be purely natural convective, in particular, have been investigated.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain