Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 1.4

ISSN Imprimer: 1940-2503
ISSN En ligne: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2020033860
pages 329-344

COMPUTATION OF EYRING-POWELL MICROPOLAR CONVECTIVE BOUNDARY LAYER FLOW FROM AN INVERTED NON-ISOTHERMAL CONE: THERMAL POLYMER COATING SIMULATION

B. Md. Hidayathulla Khan
Department of Mathematics, Aditya College of Engineering, Madanapalle – 517325, India
Shaik Abdul Gaffar
Department of Information Technology, Mathematics Section, Salalah College of Technology, Salalah – 211, Oman
Osman Anwar Beg
Gort Engovation-Aerospace, Medical and Energy Engineering, Gabriel's Wing House, 15 Southmere Avenue, Bradford, BD73NU, United Kingdom; Fluid Mechanics, Department of Mechanical and Aeronautical Engineering, Salford University, M54WT, England, United Kingdom
Ali Kadir
Multi-Physical Engineering Sciences Group, Aeronautical and Mechanical Engineering Department, School of Science, Engineering and Environment (SEE), Newton Building, University of Salford, Manchester, M54WT, UK
P. Ramesh Reddy
Department of Mathematics,Madanapalle Institute of Science & Technology, Madanapalle, India

RÉSUMÉ

Thermal coating of components with non-Newtonian materials is a rich area of chemical and process mechanical engineering. Many different rheological characteristics can be simulated for such coatings with a variety of different mathematical models. In this work, we study the steady-state coating flow and heat transfer of a non-Newtonian liquid (polymer) on an inverted isothermal cone with variable wall temperature. The Eringen micropolar and three-parameter Eyring-Powell models are combined to simulate microstructural and shear characteristics of the polymer. The governing partial differential conservation equations and wall and free stream boundary conditions are rendered into dimensionless form and solved computationally with the Keller-box finite difference method. Validation with earlier Newtonian solutions from the literature is also included. Graphical and tabulated results are presented to study the variations of fluid velocity, micro-rotation (angular velocity), temperature, skin friction, wall couple stress (micro-rotation gradient) and wall heat transfer rate. The present numerical simulations find applications in thermal polymer coating operations and industrial deposition techniques and provide a useful benchmark for more general computational fluid dynamics simulations.

RÉFÉRENCES

  1. Abdul Gaffar, S., Prasad, V.R., Vijaya, B., and Anwar Beg, O., Mixed Convection Flow of Magnetic Viscoelastic Polymer from a Non-Isothermal Wedge with Biot Number Effects, Int. J. Eng. Math., vol. 2015, p. 287623,2015.

  2. Abdul Gaffar, S., Ramachandra Prasad, V., Anwar Beg, O., Hidayathullah Khan, Md.H., and Venkatadri, K., Radiative and Magnetohydrodynamics Flow of Third Grade Viscoelastic Fluid past an Isothermal Inverted Cone in the Presence of Heat Generation/Absorption, J. Braz. Soc. Mech. Sci. Eng., vol. 40, no. 127,2018.

  3. Abdul Gaffar, S., Ramachandra Prasad, V., Keshava Reddy, E., and Anwar Beg, O., Magnetohydrodynamic Free Convection Boundary Layer Flow of Non-Newtonian Tangent Hyperbolic Fluid from a Vertical Permeable Cone with Variable Surface Temperature, J. Braz. Soc. Mech. Sci. Eng., vol. 39, pp. 101-116,2017.

  4. Abdul Latiff, N.A., Uddin, M.J., Anwar Beg, O., and Ismail, A.I., Unsteady Forced Bioconvection Slip Flow of a Micropolar Nanofluid from a Stretching/Shrinking Sheet, Proc. Inst. Mech. Eng., Part N: J. Nanoeng. Nanosys., vol. 230, no. 4, pp. 177-187,2016.

  5. Ahmad, S., Arifin, N.M., Nazar, R., and Pop, I., Mixed Convection Boundary Layer Flow past an Isothermal Horizontal Circular Cylinder with Temperature-Dependent Viscosity, Int. J. Therm. Sci, vol. 48, no. 10, pp. 1943-1948,2009.

  6. Alharbi, S., Dawar, A., Shah, Z., Khan, W., Idrees, M., Islam, S., and Khan, I., Entropy Generation in MHD Eyring-Powell Fluid Flow over an Unsteady Oscillatory Porous Stretching Surface under the Impact of Thermal Radiation and Heat Source/Sink, Appl. Sci., vol. 8, no. 12, p. 2588,2018.

  7. Ali, N., Zaman, A., Anwar Beg, O., and Hayat, T., Mathematical Model for Isothermal Wire-Coating from a Bath of Giesekus Viscoelastic Fluid, Chem. Eng. Commun., vol. 203, no. 10, pp. 1336-1348,2016.

  8. Anwar Beg, O., Ferdows, M., Islam, S., and Nazrul Islam, M., Numerical Simulation of Marangoni Magnetohydrodynamic Bio-Nanofluid Convection from a Non-Isothermal Surface with Magnetic Induction Effects: A Bio-Nanomaterial Manufacturing Transport Model, J. Mech. Med. Biol., vol. 14, no. 3, p. 1450039,2014.

  9. Anwar Beg, O., Prasad, V.R., and Vasu, B., Numerical Study of Mixed Bioconvection in Porous Media Saturated with Nanofluid and Containing Oxytactic Micro-Organisms, J. Mech. Med. Biol., vol. 13, no. 4, p. 1350067,2013.

  10. Anwar Beg, O., Subba Rao, A., Nagendra, N., Amanulla, C.H., Surya Narayana Reddy, M., and Kadir, A., Numerical Study of Hydromagnetic Non-Newtonian Nanofluid Transport Phenomena from a Horizontal Cylinder with Thermal Slip: Aerospace Nanomaterial Enrobing Simulation, J. Nanofluids, vol. 7, no. 1, pp. 115-128,2018.

  11. Anwar Beg, O., Uddin, M.J., Beg, T.A., Kadir, A., Shamshuddin, M., and Babaie, M., Modelling Mass Transfer from a Rotating Cone in Anisotropic Porous Media with Stefan Blowing andNavier Slip, Indian J. Phys, vol. 94, pp. 863-877,2019.

  12. Asghar, Z., Ali, N., Anwar Beg, O., and Javed, T., Rheological Effects of Micropolar Slime on the Gliding Motility of Bacteria with Slip Boundary Condition, Results Phys., vol. 9, pp. 682-691,2018.

  13. Cheung, F.B., Analysis of Freeze Coating on a Nonisothermal Moving Plate by a Perturbation Method, ASME J. Heat Transf.., vol. 107, no. 3, pp. 549-556,1985.

  14. Chida, K., Sakaguchi, S., Wagatsuma, M., and Kimura, T., High-Speed Coating of Optical Fibers with Thermally Curable Silicon Resin Using a Pressure Die, Electron. Lett., vol. 18, no. 16, pp. 713-715,1982.

  15. Choi, S.C., Kim, K.H., Klakina, E., Ha, S., Ryu, S.K., and Koh, S.K., Formation of an Adherent Layer by DC Plasma Polymerization, Polymer Surface Modification: Relevance to Adhesion, K.L. Mittal, Ed., Utrecht: VSP, vol. 2, pp. 527-538, 2000.

  16. Debbaut, B., Non-Isothermal and Viscoelastic Effects in the Squeeze Flow between Infinite Plates, J. Non-Newtonian Fluid Mech., vol. 98, no. 1,pp. 15-31,2001.

  17. Eringen, A.C., Simple Microfluids, Int. J. Eng. Sci., vol. 2, pp. 205-217,1964.

  18. Eringen, A.C., Theory of Micropolar Fluids, J. Math. Mech., vol. 16, pp. 1-18,1966.

  19. Eringen, A.C., Theory of Thermo-Micropolar Fluids, J. Math. Anal. Appl., vol. 38, no. 2, pp. 480-496,1972.

  20. Fanicchia, F., Csaki, I., and Geambazu, L.E., Effect of Microstructural Modifications on the Corrosion Resistance of CoCrFeMo0.85Ni Compositionally Complex Alloy Coatings, Coatings, vol. 9, no. 11, p. 695,2019.

  21. Greener, Y. and Middleman, S., Blade-Coating of a Viscoelastic Fluid, Polym. Eng. Sci., vol. 14, no. 11, pp. 791-796,1974.

  22. Gutoff, E.B., Cohen, E.D., and Kheboian, G.I., Coating and Drying Defects: Troubleshooting Operating Problems, Hoboken: Wiley, 2006.

  23. Hayat, T., Muhammad, T., and Alsaedi, A., Impact of Cattaneo-Christov Heat Flux in Three-Dimensional Flow of Second Grade Fluid over a Stretching Surface, Chin. J. Phys, vol. 55, no. 4, pp. 1242-1251,2017.

  24. Hina, S., Mustafa, M., Hayat, T., and Alsaedi, A., Peristaltic Transport of Powell-Eyring Fluid in a Curved Channel with Heat/Mass Transfer and Wall Properties, Int. J. Heat Mass Transf., vol. 101, pp. 156-165,2016.

  25. Hossain, M.A. and Paul, S.C., Free Convection from a Vertical Permeable Circular Cone with Non-Uniform Surface Temperature, Acta Mech, vol. 151, pp. 103-114,2001.

  26. Ibrahim, W. and Gadisa, G., Finite Element Method Solution of Boundary Layer Flow of Powell-Eyring Nanofluid over a Nonlinear Stretching Surface, J. Appl. Math, vol. 2019, p. 3472518,2019.

  27. Ibrahim, W., MHD Boundary Layer Flow and Heat Transfer of Micropolar Fluid past a Stretching Sheet with Second Order Slip, J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 791-799,2017.

  28. Incropera, D. andDeWitt, D., Fundamentals of Heat Mass Transfer, Hoboken: Wiley, 1981.

  29. Janardhana Reddy, G., Kumar, M., and Anwar Beg, O., Effect of Temperature Dependent Viscosity on Entropy Generation in Transient Viscoelastic Polymeric Fluid Flow from an Isothermal Vertical Plate, Physica A, vol. 510, pp. 426-445,2018.

  30. Keller, H.B., Numerical Methods in Boundary-Layer Theory, Ann. Rev. Fluid Mech., vol. 10, pp. 417-433,1978.

  31. Khan, I., Khan, M., Malik, M.Y., Salahuddin, T., and Shafquatullah, Mixed Convection Flow of Eyring-Powell Nanofluid over a Cone and Plate with Chemical Reactive Species, Results Phys, vol. 7, pp. 3716-3722,2017.

  32. Khan, Z., Shah, R.A., Islam, S., Jan, B., Imran, M., and Tahir, F., Steady Flow and Heat Transfer Analysis of Phan-Thein-Tanner Fluid in Double-Layer Optical Fiber Coating Analysis with Slip Conditions, Sci. Rep., vol. 6, p. 34593,2016a.

  33. Khan, I., Qasim, M., and Shafie, S., Flow of an Erying-Powell Fluid over a Stretching Sheet in Presence of Chemical Reaction, Therm. Sci. Int. Sci. J, vol. 20, no. 6, pp. 1903-1912,2016b.

  34. Kistler, S.F. and Schweizer, P.M., Liquid Film Coating: Scientific Principles and Their Technological Implications, New York: Chapman & Hall, 1997.

  35. Kuruneru, S.T.W., Saha, S.C., Sauret, E., and Gu, Y.T., Transient Heat Transfer and Non-Isothermal Particle-Laden Gas Flows through Porous Metal Foams of Differing Structure, Appl. Therm. Eng., vol. 150, pp. 888-903,2019.

  36. Lan, P., Zhang, Y., Dai, W., and Polycarpou, A.A., A Phenomenological Elevated Temperature Friction Model for Viscoelastic Polymer Coatings based on Nanoindentation, Tribol. Int., vol. 119, pp. 299-307,2018.

  37. Li, X.K., Han, X.H., Duan, Q., and Yao, Z.H., Modelling of Non-Isothermal Non-Newtonian Viscoelastic Flows, Computational Mechanics: Proc of2007Int. Symp. on Computational Mechanics, New York: Springer, pp. 122-135,2007.

  38. Malik, M.Y., Khan, I., Hussain, A., and Salahuddin, T., Mixed Convection Flow of MHD Eyring-Powell Nanofluid over a Stretching Sheet: A Numerical Study, AIP Adv., vol. 5, p. 117118,2015.

  39. Mehmood, R., Tabassum, R., Kuharat, S., Anwar Beg, O., and Babaie, M., Thermal Slip in Oblique Radiative Nano-Polymer Gel Transport with Temperature-Dependent Viscosity: Solar Collector Nanomaterial Coating Manufacturing Simulation, Arabian J. Sci. Eng., vol. 44, pp. 1525-1541,2019.

  40. Mishra, S.R., Khan, I., Al-Mdallal, Q.M., and Asifa, T., Free Convection Micropolar Fluid Flow and Heat Transfer over a Shrinking Sheet with Heat Source, Case Stud. Therm. Eng., vol. 11, pp. 113-119,2018.

  41. Mohd Arffin, N., Arifin, N.Md., and Bachok, N., Marangoni Boundary Layer Flow in Micropolar Fluid with Suction/Injection, AIP Conf. Proc, vol. 1795, no. 1, p. 020011,2017.

  42. Nepershin, R.I., Non-Isothermal Plane Plastic Flow of a Thin Layer Compressed by Flat Rigid Dies, Int. J. Mech. Sci, vol. 39, no. 8, pp. 899-912,1997.

  43. Norouzi, M., Daghighi, S.Z., and Anwar Beg, O., Exact Analysis of Heat Convection of Viscoelastic FENE-P Fluids through Isothermal Slits and Tubes, Meccanica, vol. 53, pp. 817-831,2018.

  44. Osman, S.A. and Langlands, T.A.M., An Implicit Keller Box Numerical Scheme for the Solution of Fractional Sub-Diffusion Equations, Appl. Math. Comput., vol. 348, pp. 609-626,2019.

  45. Powell, R.E. and Eyring, H., Mechanisms for the Relaxation Theory of Viscosity, Nature, vol. 154, no. 3909, pp. 427-428,1944.

  46. Rahimi, J., Ganji, D.D., Khaki, M., and Hosseinzadeh, Kh., Solution of the Boundary Layer Flow of an Eyring-Powell Non-Newtonian Fluid over a Linear Stretching Sheet by Collocation Method, Alexandria Eng. J., vol. 56, no. 4, pp. 621-627,2016.

  47. RamReddy, Ch., Naveen, P., and Srinivasacharya, D., Effects of Nonlinear Boussinesq Approximation and Double Dispersion on Free Convective Flow of an Ostwald-De Waele Power-Law Fluid along an Inclined Plate under Convective Thermal Condition, J. Nanofluids, vol. 7, no. 6, pp. 1247-1257,2018.

  48. Rashidi, M.M., Anwar Beg, O., and Rastegari, M.T., A Study of Non-Newtonian Flow and Heat Transfer over a Non-Isothermal Wedge Using the Homotopy Analysis Method, Chem. Eng. Comm., vol. 199, no. 2, pp. 231-256,2012.

  49. Reisfeld, B. and Bankoff, S.G., Non-Isothermal Flow of a Liquid Film on a Horizontal Cylinder, J. Fluid Mech, vol. 236, pp. 167-196,1992.

  50. Romo-Uribe, A., Dynamics and Viscoelastic Behavior of Waterborne Acrylic Polymer/Silica Nanocomposite Coatings, Prog. Org. Coat, vol. 129, pp. 125-132,2019.

  51. Shamshuddin, M.D., Reddy Sheri, S., and Anwar Beg, O., Oscillatory Dissipative Conjugate Heat and Mass Transfer in Chemically Reacting Micropolar Flow with Wall Couple Stress: A Finite Element Numerical Study, Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng., vol. 233, no. 1, pp. 48-64,2019.

  52. Siddiqa, S., Faryad, A., Begum, N., and Hossain, M.A., Reddy Gorla, R.S., Periodic Magnetohydrodynamic Natural Convection Flow of a Micropolar Fluid with Radiation, Int. J Therm. Sci., vol. 111, pp. 215-222,2017.

  53. Sirohi, V., Timol, M.G., and Kalthia, N.L., Powell-Eyring Model Flow Near an Accelerated Plate, Fluid Dyn. Res., vol. 2, no. 3, pp. 193-204,1987.

  54. Sobhani, H., Anderson, P.D., Meijer, H.H.E, Ghoreishy, M.H.R., and Razavi-Nouri, M., Non-Isothermal Modeling of a Non-Newtonian Fluid Flow in a Twin-Screw Extruder Using the Fictitious Domain Method, Macromolec. Theory Simul., vol. 22, no. 9, pp. 462-474,2013.

  55. Tanner, R.I., EngineeringRheology, Oxford: Oxford University Press, 2000.

  56. Vajravelu, K., Prasad, K.V., Lee, J., Lee, C., Pop, I., and Van Gorder, R.A., Convective Heat Transfer in the Flow of Viscous Ag-Water and Cu-Water Nanofluids over a Stretching Surface, Int. J. Therm. Sci., vol. 50, no. 5, pp. 843-851,2011.

  57. Yoon, H. and Ghajar, A.J., A Note on the Powell-Eyring FluidModel, Int. Commun. Heat Mass Transf, vol. 14, no. 4, pp. 381-390, 1987.


Articles with similar content:

Effect of chemical reaction on Jeffrey fluid model of blood flow through tapered artery with thermo-diffusion and diffuso-thermal gradients
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.18, 2018, issue
Madhu Sharma, R. K. Gaur, Bhupendra K. Sharma
COMPUTATION OF TRANSIENT RADIATIVE REACTIVE THERMOSOLUTAL MAGNETOHYDRODYNAMIC CONVECTION IN INCLINED MHD HALL GENERATOR FLOW WITH DISSIPATION AND CROSS DIFFUSION
Computational Thermal Sciences: An International Journal, Vol.11, 2019, issue 6
O. Anwar Bég, Ali Kadir, Prasanthi Modugula, Siva Reddy Sheri
FINITE ELEMENT ANALYSIS OF ROTATING OSCILLATORY MAGNETO-CONVECTIVE RADIATIVE MICROPOLAR THERMO-SOLUTAL FLOW
International Journal of Fluid Mechanics Research, Vol.45, 2018, issue 6
Ali Kadir, MD. Shamshuddin, O. Anwar Bég
COMPARISON OF THERMO-PHYSICAL PROPERTIES AND THERMAL PERFORMANCE OF MACRO-CRACKED THERMAL BARRIER COATING PROCESSED BY APS WITH EBPVD TBCS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Nalini Uppu, Patrick Mensah
ENTROPY GENERATION IN MAGNETOHYDRODYNAMIC RADIATIVE NON-NEWTONIAN DISSIPATIVE CONVECTION FLOW FROM AN INCLINED PLANE: NUMERICAL STUDY
Nanoscience and Technology: An International Journal, Vol.11, 2020, issue 4
Osman Anwar Beg, Shaik Abdul Gaffar, B. Md. Hidayathulla Khan, Khalil-Ur-Rehman