Abonnement à la biblothèque: Guest
Atomization and Sprays

Publication de 12  numéros par an

ISSN Imprimer: 1044-5110

ISSN En ligne: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

A GENERALIZED OHNESORGE NOMOGRAM FOR LIQUID JET BREAKUP REGIMES

Volume 30, Numéro 3, 2020, pp. 213-238
DOI: 10.1615/AtomizSpr.2020034267
Get accessGet access

RÉSUMÉ

The present experimental study extends the Ohnesorge nomogram of liquid jet breakup regimes to viscoelastic liquids and presents a model for the jet breakup length. The experiments are carried out with water and with aqueous solutions of two different flexible polymers. The experiments rely on the visualization of the jets for identifying the breakup mechanism and for measuring the breakup length. Both the breakup mechanisms and the breakup lengths of the jets are modeled in a form allowing both Newtonian and non-Newtonian, viscoelastic liquids to be included. It is shown that, for the representation of the two classes of liquids, the dynamic viscosity to be involved must be an elongational rather than a shear viscosity. In the breakup of viscoelastic liquid jets, the elongational viscosity is a transient quantity. For breakup modeling, the terminal elongational viscosity is identified as relevant. Both the breakup mechanisms and the breakup lengths are well represented by the elongational Reynolds and Ohnesorge numbers.

RÉFÉRENCES
  1. Bazilevsky, A.V., Entov, V.M., and Rozhkov, A.N., Eds., Liquid Filament Microrheometer and Some of Its Applications, Proc. 3rd Euro. Rheology Conf, Elsevier, pp. 41-43, 1990.

  2. Brenn, G., Zu Diskrepanzen zwischen drei Versionen von Ohnesorges Zerfallsdiagramm in Verschiedenen Arbeiten uber Strahlzerfall (On Discrepancies between Three Versions of Ohnesorge's Breakup Diagram in the Literature about Jet Breakup, in German), Internal Report, Chair of Fluid Mechanics, Friedrich-Alexander University of Erlangen-Niirnberg, 1992.

  3. Brenn, G., Liu, Z.B., and Durst, F., Linear Analysis of the Temporal Instability of Axisymmetrical Non-Newtonian Liquid Jets, Int. J. Multiphase Flow, vol. 26, pp. 1621-1644,2000.

  4. Bueche, F., Influence of Rate of Shear on the Apparent Viscosity of A-Dilute Polymer Solutions, and B-Bulk Polymers, J. Chem. Phys, vol. 22, pp. 1570-1576, 1954.

  5. Dee, G.T. and Sauer, B.B., The Surface Tension of Polymeric Liquids, Adv. Phys, vol. 47, pp. 161-205, 1998.

  6. Goldin, M., Yerushalmi, J., Pfeffer, R., and Shinnar, R., Breakup of a Laminar Capillary Jet of a Viscoelastic Fluid, J. Fluid Mech., vol. 38, pp. 689-711,1969.

  7. Gordillo, J.M. and Perez-Saborid, M., Aerodynamic Effects in the Breaku-Up of Liquid Jets: On the First Wind-Induced Break-Up Regime, J. Fluid Mech, vol. 541, pp. 1-20, 2005.

  8. Haenlein, A., Uber den Zerfall eines Flussigkeitsstrahles (On the Breakup of a Liquid Jet, in German), Forsch. Geb. Ing.-Wesens, vol. 2, pp. 139-149, 1931.

  9. Keshavarz, B., Sharma, V., Houze, E., Koerner, M., Moore, J., Cotts, P., Threfrall-Holmes, P., and McKin- ley, G.H., Studying the Effects of Elongational Properties on Atomization of Weakly Viscoelastic Solutions Using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER), J. Non-Newtonian Fluid Mech., vol. 222, pp. 171-189, 2015.

  10. Kroesser, F.W. and Middleman, S., Viscoelastic Jet Stability, AIChE J, vol. 15, pp. 383-386, 1969.

  11. Lefebvre, A.H. and McDonell, V.G., Atomization and Sprays, CRC Press, 2017.

  12. Leroux, S., Dumouchel, C., and Leroux, M., The Stability Curve of Newtonian Liquid Jets, Atomization Spray, vol. 6, pp. 623-647,1996.

  13. Lin, S.P. and Reitz, R.D., Drop and Spray Formation from a Liquid Jet, Annu. Rev. Fluid Mech., vol. 30, pp. 85-105, 1998.

  14. McCarthy, M.J. and Molloy, N.A., Review of Stability of Liquid Jets and the Influence of Nozzle Design, The Chem. Eng. J, vol. 7, pp. 653-670, 1974.

  15. Middleman, S., Stability of a Viscoelastic Jet, Chem. Eng. Sci., vol. 20, pp. 1037-1040, 1965.

  16. Miesse, C., Correlation of Experimental Data on the Disintegration of Liquid Jets, Ind. Eng. Chem, vol. 47, pp. 1690-1701, 1955.

  17. Moussa, T. and Tiu, C., Factors Affecting Polymer Degradation in Turbulent Pipe Flow, Chem. Eng. Sci, vol. 49, pp. 1681-1692, 1994.

  18. Rayleigh, J.W.S., On the Instability of Jets, Proc. London Math. Soc., vol. 10, pp. 4-13, 1878.

  19. Rayleigh, J.W.S., On the Capillary Phenomena of Jets, Proc. R. Soc. London A, vol. 29, pp. 71-97, 1879.

  20. Rayleigh, J.W.S., On the Instability of a Cylinder of Viscous Liquid under Capillary Force, Phil. Mag, vol. 34, pp. 145-154, 1892.

  21. Schiimmer, P. and Tebel, K.H., Instability of Jets of Non-Newtonian Fluids, in Rheology 2 - Fluids, G. Astarita, G. Marucci, and L. Nicolais, Eds., Boston, MA: Springer, pp. 87-92, 1980.

  22. Schummer, P. and Tebel, K.H., Production of Monodisperse Drops by Forced Disturbance of a Free Jet, Ger. Chem. Eng., vol. 12, pp. 331-347, 1982.

  23. Schummer, P. and Tebel, K.H., A New Elongational Rheometer for Polymer Solutions, J. Non-Newtonian Fluid Mech., vol. 12, pp. 331-347, 1983.

  24. Singh, R.P., Drag Reduction and Shear Stability Mechanism, in Encyclopedia of Fluid Mechanics, N.P. Cheremisinoff, Ed., Houston, TX: Gulf Publishing, Ch. 14, pp. 425-480,1990.

  25. Stelter, M., Brenn, G., Yarin, A.L., Singh, R.P., and Durst, F., Validation and Application of a Novel Elon-gational Device for Polymer Solutions, J. Rheol., vol. 44, pp. 595-616,2000.

  26. Stelter, M., Brenn, G., and Durst, F., The Influence of Viscoelastic Fluid Properties on Spray Formation from Flat Fan and Pressure Swirl Atomizers, Atomization Spray, vol. 12, pp. 299-328, 2002a.

  27. Stelter, M., Brenn, G., Yarin, A.L., Singh, R.P., and Durst, F., Investigation of the Elongational Behavior of Polymer Solutions by Means of an Elongational Rheometer, J. Rheol., vol. 46, pp. 507-527, 2002b.

  28. Sterling, A.M. and Sleicher, C.A., The Instability of Capillary Jets, J. Fluid Mech., vol. 68, pp. 477-495, 1975.

  29. Tirtaatmadja, V. and Sridhar, T., A Filament Stretching Device for Measurement of Extensional Viscosity, J. Rheol., vol. 37, pp. 1081-1102, 1993.

  30. Tomotika, S., On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid, Proc. R. Soc. London A, vol. 150, pp. 322-337,1935.

  31. Trettel, B., Reevaluating the Jet Breakup Regime Diagram, Atomization Spray, in press, 2020.

  32. von Ohnesorge, W., Die Bildung von Tropfen an Dusen und Die Auflosung Flussiger Strahlen (The Formation of Drops by Nozzles and the Breakup of Liquid Jets, in German), Zeitschr. Angew. Math. Mech, vol. 16, pp. 355-358, 1936.

  33. Weber, C., Zum Zerfall eines Flussigkeitsstrahles (On the Breakup of a Liquid Jet, in German), Zeitschr. Angew. Math. Mech., vol. 11, pp. 136-154,1931.

  34. Xing, J.H., Soucemarianadin, A., and Attane, P., Experimental Study of the Breakup of Viscoelastic Fluid Jets, Proc. 6thInt. Conf. LiquidAtomiz. Spray Syst., A.J. Yule and C. Dumouchel, Eds., pp. 63-70,1994.

  35. Yarin, A.L., Free Liquid Jets and Films: Hydrodynamics and Rheology, Longman Group UK Limited, 1993.

CITÉ PAR
  1. Jia Bo-qi, Fu Qing-fei, Xu Xu, Yang Li-jun, Zhang Ding-wei, Wang Tie-han, Wang Qun, Spray characteristics of Al-nanoparticle-containing nanofluid fuel in a self-excited oscillation injector, Fuel, 290, 2021. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain