Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.262 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015011000
pages 587-615

DEVELOPMENT OF AN IMPROVED SPRAY/WALL INTERACTION MODEL FOR DIESEL-LIKE SPRAY IMPINGEMENT SIMULATIONS

Peng Deng
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China; Engine Research Center, University of Wisconsin-Madison, Rm 1018A, 1500 Engineering Drive, Madison, Wisconsin 53706, USA
Qi Jiao
Engine Research Center, University of Wisconsin-Madison, Rm 1018A, 1500 Engineering Drive, Madison, Wisconsin 53706, USA
Rolf D. Reitz
Engine Research Center, University of Wisconsin-Madison, Rm 1018A, 1500 Engineering Drive, Madison, Wisconsin 53706, USA
Zhiyu Han
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China; Huai'an Industrial Technology Research Institute, Huai'an, China

RÉSUMÉ

A new spray/wall interaction model was developed with emphasis on the simulation of diesel-like spray impingement generated by high injection pressures, which is widely used in direct-injection gasoline and diesel engines. In contrast to traditional spray/wall interaction models, lift forces were considered on the wall spray droplets in the new model, which generates a vortex at the leading edge of the wall spray instead of droplet rebound or splash. In addition, a wall-jet submodel was adopted to correct the droplet-gas relative velocity in the calculation of drag and lift forces on the droplets. Grid dependency was also significantly reduced in the new model due to the implementation of the wall-jet submodel. The wall-jet submodel was extended to cover both normal and oblique impingements, which are relevant in engines with a side-mounted injector. In the new model a new correlation was also developed to estimate the splashed mass ratio for each individual impact droplet, which provides a more accurate prediction of the overall spray impingement process. Extensive validations of the new model were performed through comparisons against measurements from a variety of diesel spray impingement experiments, instead of just using single drop or drop train impingement experiments. The results indicate that the new model matches experimental measurements very well and can be used for the prediction of spray/wall interaction, especially under the conditions relevant to modern direct-injection diesel and gasoline engines.


Articles with similar content:

DEVELOPMENT OF A SPREAD SUBMODEL FOR SPRAY/WALL IMPACTION
Atomization and Sprays, Vol.28, 2018, issue 10
Zahra Firouznia, Hassan Khaleghi, Sajad Yazdanparast, MohammadReza Keshtkar
CHARACTERISTICS OF SPRAYS THROUGH A WALL IMPINGEMENT INJECTOR
Atomization and Sprays, Vol.14, 2004, issue 4
Takao Inamura, Terutoshi Tomoda
MODELING OF GASOLINE SPRAY IMPINGEMENT
Atomization and Sprays, Vol.12, 2002, issue 1-3
A. D. Gosman, C. X. Bai, H. Rusche
SPRAY CHARACTERIZATION IN A CONFINED FLOW
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
G. Lavergne, F. Bismes , P. Trichet
ON THE SHEET BREAKUP OF DIRECT-INJECTION GASOLINE PRESSURE-SWIRL ATOMIZER SPRAYS
Atomization and Sprays, Vol.17, 2007, issue 6
P. W. Loustalan, Martin H. Davy