Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.737 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i7.30
pages 749-762

FURTHER DEVELOPMENTS OF A NOVEL SELF-DRIVEN SPRAY NOZZLE

Edward H. Owens
Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
Weiping Liu
Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
George H. Smith
Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
Mark T. Leonard
Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom

RÉSUMÉ

An experimental study of a further development of a novel atomizing nozzle is presented. The novelty of the nozzle lies in the incorporation of a self-driven, hydraulic turbine, which provides improved atomization performance. The inclusion of this rotating component promotes smaller particle sizes within the plume for a given pressure and flow rate. A new version of the nozzle is described in terms of both design and performance. Previous versions of the nozzle produced spray plumes by a variety of atomization processes. This new version incorporates a series of enclosed spray channels that provide a spinning disk-type atomization effect. The effect on the spray plume is to produce a Sauter mean diameter that varies with fluid feed pressure and a plume spray density that is similar to a solid cone-type plume. The Sauter mean diameter was found to vary within the range of 80−190 μm. The observed droplet size distributions suggest that the nozzle produces a spray similar to that produced by spinning disk atomizers in the outer region of the spray plume. The volumetric concentration in the inner spray is reduced to 40% of that in the outer plume, and the droplets present in this region are smaller than in the outer plume.


Articles with similar content:

DROPLET CHARACTERIZATION OF A NOVEL ORIFICE SPRAY NOZZLE
Atomization and Sprays, Vol.15, 2005, issue 5
Weiping Liu, George H. Smith, Edward H. Owens, Mark T. Leonard
DEVELOPMENT OF AN AIR-BLAST ATOMIZER FOR INDEPENDENT CONTROL OF DROPLET SIZE AND SPRAY DENSITY
Atomization and Sprays, Vol.14, 2004, issue 3
C. P. Koshland, R. F. Sawyer, H. L. Clack, D. Lucas
EFFERVESCENT ATOMIZATION OF HIGH-VISCOSITY FLUIDS: PART I. NEWTONIAN LIQUIDS
Atomization and Sprays, Vol.1, 1991, issue 3
Paul E. Sojka, Harry N. Buckner
ULTRASOUND-MODULATED TWO-FLUID ATOMIZATION OF VISCOUS NEWTONIAN LIQUIDS
Atomization and Sprays, Vol.13, 2003, issue 4
Ken Law, Maha Yamak, Shirley C. Tsai
Dynamics of an Airblast Spray in a Double Swirled Stabilized Flame
International Journal of Fluid Mechanics Research, Vol.28, 2001, issue 6
Redjem Hadef