Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.189 Facteur d'impact sur 5 ans: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i7.50
pages 777-790

QUANTIFYING AIR ATOMIZATION OF VISCOELASTIC FLUIDS THROUGH FLUID RELAXATION TIMES

Yenny Christanti
Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
Lynn M. Walker
Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

RÉSUMÉ

The industrial need to control the atomization of non-Newtonian fluids necessitates an understanding of the influence of fluid rheology and different viscoelastic properties on this complex process. Previous studies of atomization of a pertinent class of non-Newtonian fluids—polymer solutions—provide a wealth of qualitative observations of the effects of viscoelasticity but are often hindered by the inability to decouple different types of non-Newtonian behavior. Here we use a series of well-characterized polymer solutions whose non-Newtonian behavior are dominated by extensional hardening and utilize a fluid relaxation time τ—the key viscoelastic parameter characterizing the onset of extensional hardening—to quantify the atomization process. The model fluids are sprayed via an air atomizer, and the drop size distributions are measured using a diffraction-based size analyzer. The atomization study shows that viscoelasticity increases the mean drop diameter and broadens the size distribution. We incorporate fluid relaxation time into a drop size correlation that predicts the Sauter mean diameter.


Articles with similar content:

THE INFLUENCE OF VISCOELAST1C FLUID PROPERTIES ON SPRAY FORMATION FROM FLAT-FAN AND PRESSURE-SWIRL ATOMIZERS
Atomization and Sprays, Vol.12, 2002, issue 1-3
Günter Brenn, Franz Durst, M. Stelter
EFFERVESCENT ATOMIZATION OF HIGH-VISCOSITY FLUIDS: PART II. NON-NEWTONIAN LIQUIDS
Atomization and Sprays, Vol.3, 1993, issue 2
Paul E. Sojka, Harry N. Buckner
DROP SIZE SCALING ANALYSIS OF NON-NEWTONIAN FLUIDS
Atomization and Sprays, Vol.4, 1994, issue 4
Alan J. Bilanin, Milton E. Teske
TEMPERATURE EFFECTS ON ATOMIZATION BY FLAT-FAN NOZZLES: IMPLICATIONS FOR DRIFT MANAGEMENT AND EVIDENCE FOR SURFACTANT CONCENTRATION GRADIENTS
Atomization and Sprays, Vol.8, 1998, issue 3
Andrew C. Chapple, Franklin R. Hall, Roger A. Downer, Rebecca S. Thompson
MEASUREMENT OF EXTENSIONAL VISCOSITY OF POLYMER SOLUTIONS AND ITS EFFECTS ON ATOMIZATION FROM A SPRAY NOZZLE
Atomization and Sprays, Vol.6, 1996, issue 2
R. W. Dexter