Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.189 Facteur d'impact sur 5 ans: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2014007885
pages 281-302

LARGE EDDY SIMULATION OF SINGLE DROPLET AND LIQUID JET PRIMARY BREAKUP USING A COUPLED LEVEL SET/VOLUME OF FLUID METHOD

Feng Xiao
Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha, HuNan, 410073, China
M. Dianat
Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire, United Kingdom
James J. McGuirk
Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire, United Kingdom

RÉSUMÉ

Numerical modeling of primary breakup of a liquid jet under the influence of strong aerodynamic and turbulence effects is very challenging, especially for high liquid/gas density ratio O (1000). A robust algorithm for large eddy simulation (LES) of two-phase flows is presented here. A coupled level set and volume of fluid (CLSVOF) technique is applied as the interface-tracking method in order to combine the advantages of level set and volume of fluid methods. The governing equations are discretized by introducing an extrapolated liquid velocity to minimize the interface momentum error. Since experimental studies on breakup of a single liquid drop in uniform gas flow are well documented, this test case is first used to validate the developed two-phase flow LES method. It is shown that the predicted drop breakup agrees quantitatively well with experiments for different Weber numbers. The solver is then applied to simulate primary breakup of liquid jets, which are more relevant to industrial applications. By simulating single round water jet atomization in high-speed coaxial airflow, it is found that the predicted liquid core breakup lengths at different air/liquid velocities agree closely with measured data, but only when appropriate turbulent inflow conditions are specified.


Articles with similar content:

EMBEDDED DNS CONCEPT FOR SIMULATING THE PRIMARY BREAKUP OF AN AIRBLAST ATOMIZER
Atomization and Sprays, Vol.26, 2016, issue 3
Johannes Janicka, Amsini Sadiki, Benjamin Sauer
AVERAGE DROPLET DIAMETER SPATIAL DISTRIBUTION IN A SPRAY AFTER GAS-ASSISTED PREMIXED ATOMIZATION
Atomization and Sprays, Vol.21, 2011, issue 8
Konstantin Pougatch, J. McMillan, Martha Eva Salcudean
LARGE EDDY SIMULATION OF LIQUID JET ATOMIZATION
Atomization and Sprays, Vol.21, 2011, issue 9
Francois-Xavier Demoulin, Thibaut Menard, J. Chesnel, Julien Reveillon
A PARAMETRIC NUMERICAL STUDY OF THE HEAD-ON COLLISION BEHAVIOR OF DROPLETS
Atomization and Sprays, Vol.20, 2010, issue 3
Nikos Nikolopoulos, Konstantinos-Stephen P. Nikas, George Strotos
DIRECT NUMERICAL AND LARGE-EDDY SIMULATION OF PRIMARY ATOMIZATION IN COMPLEX GEOMETRIES
Atomization and Sprays, Vol.23, 2013, issue 11
Peter Brady, Mark Owkes, Olivier Desjardins, Jeremy McCaslin