Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.262 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015010398
pages 837-856

FLASHING BEHAVIOR OF ROCKET ENGINE PROPELLANTS

Grazia Lamanna
Institute of Aerospace Thermodynamics, Universitat Stuttgart, Germany
H. Kamoun
Institute of Aerospace Thermodynamics, Universitat Stuttgart, Germany
Bernhard Weigand
Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, Pfaffenwaldring 31, Stuttgart 70569, Germany
Chiara Manfletti
Institute of Space Propulsion, German Aerospace Center (DLR), Germany
A. Rees
Institute of Space Propulsion, German Aerospace Center (DLR), Germany
Joachim Sender
Institute of Space Propulsion, German Aerospace Center (DLR), Germany
Michael Oschwald
DLR German Aerospace Center, Lampoldshausen, Baden-Württemberg, 74239, Germany
Johan Steelant
The European Space Research and Technology Center, Noordwijk, Netherlands

RÉSUMÉ

This paper investigates the morphology of a flash-atomizing jet at conditions representative for rocket engine operations. Due to its relevance for the aerospace industry, both storable and cryogenic rocket engine propellants are considered, namely ethanol [as inert equivalent of monomethyl hydrazine (MMH)] and liquid oxygen (LOx). A comparison between the flashing behavior of these two fluids is conducted. Despite the differences in their physical properties, a close similarity in the spray characteristics is found in terms of spray shape, spreading angles, and evolution of the flashing regimes as a function of the initial superheat. Based on this similarity, the applicability of a novel, nucleation-based onset criterion (χ parameter) for the fully flashing regime is verified for cryogenic propellants, showing a satisfactory agreement. This result has important implications. First, it corroborates that jet disintegration at highly superheated conditions is mainly controlled by the kinetics of phase transitions (i.e., the nucleation rate). Second, it explains the differences in the degree of superheat (Rp) at onset of the fully flashing regime between ethanol and LOx sprays, respectively. The low operating temperatures in cryogenic systems result in a significant increase of the energy barrier to nucleation. Consequently, the inception of nucleate boiling can occur either at significantly higher Rp values (homogeneous process) or may be triggered by heterogeneous effects. The associated increase of the χ parameter at the onset provides a good indication of the transition to heterogeneous nucleate boiling.


Articles with similar content:

SYSTEM-INDUCED INSTABILITIES IN FORCED CONVECTION FLOWS WITH SUBCOOLED BOILING
International Heat Transfer Conference 3 , Vol.15, 1966, issue
John S. Maulbetsch, Peter Griffith
THERMODYNAMICS OF SURFACE GENERATION IN THE BREAKAGE PROCESS OF FLUIDS
Atomization and Sprays, Vol.19, 2009, issue 7
Yoram Zimmels, Leonid Fel
MODELLING THE FLOW OF DROPLETS OF BIO-PESTICIDE ON FOLIAGE
Interfacial Phenomena and Heat Transfer, Vol.2, 2014, issue 1
A. Brown, H. M. Thompson, P. H. Gaskell, Sergii Veremieiev, N. Kapur, C. R. Glass
COMPUTATIONAL STUDY OF FLUID PROPERTY EFFECTS ON THE CAPILLARY BREAKUP OF A LIGAMENT
Atomization and Sprays, Vol.23, 2013, issue 12
S. S. Deshpande, Mario F. Trujillo, S. Kim
SCALING AND CORRELATION OF FLUCTUATING VORTICITY IN TURBULENT WALL LAYERS
TSFP DIGITAL LIBRARY ONLINE, Vol.8, 2013, issue
Ronald L. Panton