Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.262 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2017019727
pages 771-790

IMPROVED SEMI-EMIPIRICAL PREDICTION OF VISCOUS SPRAY CONE ANGLE FOR PRESSURE SWIRL ATOMIZERS

Lei Sun
Collaborative Innovation Center of Advanced Aero-Engines, National Key Laboratory of Science and Technology on Aero-Engines, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
Yong Huang
Collaborative Innovation Center of Advanced Aero-Engines, National Key Laboratory of Science and Technology on Aero-Engines, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
Zhilin Liu
Collaborative Innovation Center of Advanced Aero-Engines, National Key Laboratory of Science and Technology on Aero-Engines, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China

RÉSUMÉ

Pressure swirl atomizers are widely used in many fields due to their geometrical simplicity and good atomization characteristics. However, few correlations are capable of reflecting the effects of liquid viscosity on the spray cone angles. In this paper, an improved semi-empirical correlation is derived to predict the viscous spray cone angles. The correlation accounts for the effects of boundary layer, hence effectively associates spray cone angles with the geometric parameters of atomizer and liquid viscosity. The improved semi-empirical correlation reveals that the spray cone angles decrease with the increase of the length of the swirl chamber, the length of the discharge orifice, the ratio of the radius of the swirl chamber to the radius of the discharge orifice, or the liquid viscosity. The spray cone angles decrease with the decreasing of the half-angle of the convergent duct. Then, five types of pressure swirl atomizers with different swirl chamber lengths and four types of liquids with different viscosities are used to validate the improved semi-empirical correlation proposed in this paper. It is observed in the experiments that the spray cone angles decrease with the increase of the lengths of the swirl chamber or the liquid viscosity. The spray cone angles predicted by this improved semi-empirical correlation agree better with the experimental results than all other available correlations. The prediction uncertainties of the improved semi-empirical correlation to predict the spray cone angles of pressure swirl atomizers are within ±10% for the present experimental data.


Articles with similar content:

EFFECTS OF CROSS-FLOW ON FUEL SPRAY INJECTED BY HOLE-TYPE INJECTOR FOR DIRECTINJECTION GASOLINE ENGINE
Atomization and Sprays, Vol.25, 2015, issue 1
Youichi Ogata, Keiya Nishida, Ryousuke Kishi, Min Guo, Baolu Shi
A HOLOGRAPHIC INVESTIGATION OF THE NEAR-NOZZLE STRUCTURE OF AN EFFERVESCENT ATOMIZER-PRODUCED SPRAY
Atomization and Sprays, Vol.5, 1995, issue 2
Paul E. Sojka, Philip J. Santangelo
LIGAMENT-CONTROLLED EFFERVESCENT ATOMIZATION
Atomization and Sprays, Vol.7, 1997, issue 4
Paul E. Sojka, Michael W. Plesniak, J. J. Sutherland
DISCHARGE COEFFICIENT AND SPRAY ANGLE MEASUREMENTS FOR SMALL PRESSURE-SWIRL NOZZLES
Atomization and Sprays, Vol.4, 1994, issue 3
Cesar Dopazo, Javier Ballester
FLOW PATTERN OBSERVATIONS OF GASOLINE DISSOLVED CO2 INSIDE AN INJECTOR
Atomization and Sprays, Vol.16, 2006, issue 6
A. Rashkovan, Eran Sher