Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.737 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013008128
pages 745-761

EFFECT OF FUEL DROPLET SIZE AND INJECTION TEMPERATURE ON THE PERFORMANCE OF KEROSENE-OXYGEN PULSE DETONATION ROCKET ENGINE

Le Jin
School of Power and Energy, Northwestern Polytechnical University, Xian, 710072, China
Wei Fan
School of Power & Energy, Northwestern Polytechnical University, Xi'an, 710072, China
Zhencen Fan
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
Haoyi Song
School of Power and Energy, Northwestern Polytechnical University, Xian, 710072, China

RÉSUMÉ

In this study, the effect of fuel droplet size and injection temperature on the operating performance of a kerosene-oxygen pulse detonation rocket engine was experimentally investigated. A special particle size analyzing system was utilized to measure the kerosene droplet size. In addition, another experimental test system was also established to investigate the operating performance of a kerosene-oxygen pulse detonation rocket engine at the frequency of10 Hz. Three sizes of pressure-swirl nozzles were used to the experiment. The experimental results indicated that the SMD of kerosene droplets gradually decreased as the injection temperature increased, and three temperature ranges are separately discussed. The experiment results demonstrated that higher injection temperature and smaller SMD were beneficial to improve the operating performance. The thrust and specific impulse were very sensitive to the SMD value. As the injection temperature of the PDRE increased from 293 to 493K, the thrust increased by 23.42, 14.38, and 19.53%, and the specific impulse increased by 21.62, 19.61, and 15.89%, for nozzles 1, 2, and 3, respectively.


Articles with similar content:

EXPERIMENTAL INVESTIGATIONS OF DROP SIZE DISTRIBUTIONS WITH IMPINGING LIQUID JETS USING PHASE DOPPLER ANEMOMETER
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Marc Bellenoue, Clement Indiana, Bastien Boust
ANALYSIS AND TESTING OF FUEL REGRESSION RATE CONTROL IN SOLID FUEL RAMJETS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Alon Gany, Deborah Pelosi-Pinhas
EFFECT OF INJECTION PARAMETERS ON SPRAY CHARACTERISTICS OF GAS-TO-LIQUID (GTL), BIODIESEL, AND DIESEL FUEL FOR A MULTI-HOLE INJECTOR IN A DIESEL ENGINE
Atomization and Sprays, Vol.25, 2015, issue 12
Chang Sik Lee, Donggon Lee, Hyun Gu Roh, Kibong Choi
EXPERIMENTAL INVESTIGATION OF SPRAY CHARACTERISTICS OF DIESEL-METHANOL-WATER EMULSION
Atomization and Sprays, Vol.25, 2015, issue 8
Wuqiang Wang, Shenteng Cao, Dongyin Wu, Junjie Yan, Zhenzhou Pang
CHARACTERIZATION OF PROTOTYPE HIGH-PRESSURE SWIRL INJECTOR NOZZLES, PART I: PROTOTYPE DEVELOPMENT AND INITIAL CHARACTERIZATION OF SPRAYS
Atomization and Sprays, Vol.10, 2000, issue 2
Sangmin Choi, Changsoo Jang, Choongsik Bae