Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.737 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i3.20
pages 265-278

EXPERIMENTAL INVESTIGATION OF COALESCENCE AND DROPLET TRAJECTORIES BETWEEN TWO POLYDISPERSE SPRAYS

M. Valencia-Bejarano
Department of Chemical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
J. J. Nijdam
Department of Chemical Engineering, University of Sydney,
Timothy Langrish
University of Sydney, Sydney, NSW 2006, Australia,

RÉSUMÉ

Phase-Doppler anemometry was used to measure droplet size and velocity profiles at different downstream positions for two nozzles pointed toward each other at an angle of 45 deg to the centerline. Furthermore, droplet trajectories were studied in more detail using fluids with different sodium-ion concentrations for each nozzle at two different operating conditions, which produce small and large droplets, respectively. The results showed that large droplets have more inertia and travel more quickly than small droplets, so that they retain their radial velocity component farther downstream and penetrate further into the adjacent spray. Therefore, large droplets are more likely to capture the small droplets that are found along their trajectory while traveling toward the other side of the crossover point between the sprays. The results of the experiments with different sodium-ion concentrations for each nozzle also showed that coalescence of droplets does occur to some extent with two nozzles in this configuration.


Articles with similar content:

DROPLET SIZE AND VELOCITY MEASUREMENTS FROM COMMERCIAL "FOGGER" TYPE PEPPER SPRAY PRODUCTS
Atomization and Sprays, Vol.18, 2008, issue 4
Edward White V, Cary Presser
Experimental Investigation of Polydisperse Spray Interaction
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Günter Brenn, A. Selbach
PULSATING SLURRY ATOMIZATION, FILM THICKNESS, AND AZIMUTHAL INSTABILITIES
Atomization and Sprays, Vol.28, 2018, issue 7
Wayne Strasser, Francine Battaglia
BREAKUP OF DROPLETS OF NEWTONIAN AND NON-NEWTONIAN FLUIDS
Atomization and Sprays, Vol.6, 1996, issue 3
D. S. Whitelaw, Jim H. Whitelaw, C. Arcoumanis
MECHANISMS, EXPERIMENT, AND THEORY OF LIQUID SHEET BREAKUP AND DROP SIZE FROM AGRICULTURAL NOZZLES
Atomization and Sprays, Vol.24, 2014, issue 8
Anthony Altieri, Steven Cryer, Lipi Acharya