Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.189 Facteur d'impact sur 5 ans: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013006811
pages 763-797

ONSET OF ATOMIZATION ON HORIZONTAL, SHEAR-DRIVEN LIQUID FILMS AT THE VICINITY OF A SHARP CORNER

Evangelos Bacharoudis
Universitu Lille Nord de France, 59000 Lille, France, UVHC, TEMPO 59313 Valenciennes, France; von Karman Institute for Fluid Dynamics, Rhode-St-Genese, Belgium
Herve Bratec
Robert Bosch Produktie N.V., Tienen, Belgium
Laurent Keirsbulck
Universitu Lille Nord de France, 59000 Lille, France, UVHC, TEMPO 59313 Valenciennes, France
Jean-Marie Buchlin
von Karman Institute for Fluid Dynamics, Rhode-St-Genese, Belgium
Larbi Labraga
Universitu Lille Nord de France, 59000 Lille, France, UVHC, TEMPO 59313 Valenciennes, France

RÉSUMÉ

In many engineering applications, the liquid films have to deal with sudden changes of the wall geometries in which they flow over. The present work concerns the study of the onset of the film atomization in corner geometries. Specifically, films with thickness in the range of 1 mm < hf < 2.5 mm and dimensionless scale parameters in the range of 2 < ε · Ref < 24, able to expand in a spanwise direction without side restrictions, are developed on a horizontal plate. The films approach a sharp corner of 90° at the end of the plate under the shearing action of an external airflow. The air velocity and the liquid flow rate in which the film atomization at the corner edge initiates are detected experimentally. The behavior of the mean film and its waves at the corner are studied under those conditions. Both the viscosity and the surface tension are varied to investigate the effect of the liquid properties on the onset of the film atomization. The experimental data obtained here are compared extensively with the atomization models found in the open literature. The comparison shows that the existing models are not able to predict the onset of atomization for the films of the current work. That happens mainly because the interfacial waves have been totally neglected from the models. Further theoretical development is required to successfully predict the initiation of the droplet generation in corner geometries.


Articles with similar content:

INJECTION, ATOMIZATION AND MIXING OF PROPELLANTS IN LIQUID ROCKET ENGINES USING COXIAL INJECTORS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
G. Krulle, W. Mayer
FROM HIGH-FIDELITY NUMERICAL SIMULATIONS OF A LIQUID-FILM ATOMIZATION TO A REGIME CLASSIFICATION
Atomization and Sprays, Vol.28, 2018, issue 1
Camille Bilger, R. Stewart Cant
A UNIFIED FUEL SPRAY BREAKUP MODEL FOR INTERNAL COMBUSTION ENGINE APPLICATIONS
Atomization and Sprays, Vol.18, 2008, issue 5
Dennis N. Assanis, Christos Chryssakis
ANALYSIS OF PRESSURE SWIRL AND PURE AIRBLAST ATOMIZATION
Atomization and Sprays, Vol.1, 1991, issue 2
A. J. Przekwas, Chien-Pei Mao, S. G. Chuech
EXPERIMENTAL STUDY OF COAXIAL ATOMIZERS SCALING. PART I: DENSE CORE ZONE
Atomization and Sprays, Vol.17, 2007, issue 5
Francois Lacas, Bertrand Leroux, Olivier Delabroy