Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.262 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i4.60
pages 345-364


Philipp Pischke
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52062 Aachen, Germany
D. Martin
Institute of Heat and Mass Transfer, RWTH Aachen University, Eilfschornsteinstr. 18, 52062 Aachen, Germany
Reinhold Kneer
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52062 Aachen, Germany


Piezoinjectors with outwardly opening nozzles are the latest generation of high-pressure injectors for gasoline direct injection (GDI). In this study, a combined Eulerian-Lagrangian spray model is presented, which is based on user-defined implementations of all key models within a Fluent framework. Primary and secondary breakup is modeled with a combined LISA-KH-TAB approach. The LISA primary breakup model is extended by a one-dimensional model of the nozzle flow and by modified momentum source terms that lead to a more reasonable prediction of the near-nozzle continuous phase flow field. The KH and TAB secondary breakup models are applied to high and low Weber number secondary breakup, respectively. The collision model implemented accounts for all relevant collision regimes (i.e., coalescence, stretching separation, reflexive separation, and bouncing). For the bouncing and reflexive separation regimes, the momentum equations are modified because the standard equations cannot predict the trajectories after off-center collisions of differently sized droplets. Vaporization is modeled with a single-component model, which employs an analytical solution of the coupled heat and mass transfer equations. The combined model is validated with light scattering visualization and light sheet measurements, phase-doppler anemometry (PDA), and laser correlation velocimetry (LCV) at pressurized vaporizing- and nonvaporizing conditions. The validation indicates a good agreement of both macroscopic and microscopic properties, such as the spray geometry, vortex positions, or drop size distributions.