Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.262 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v6.i6.10
pages 623-647

THE STABILITY CURVE OF NEWTONIAN LIQUID JETS

S. Leroux
URA 230 CNRS/CORIA, Mon-Saint-Aignan Cedex, France
Christophe Dumouchel
Université et INSA de Rouen France
M. Ledoux
CORIA-UMR CNRS 6614, Universite de Rouen, Site du Madrillet Avenue de l’Universite, BP12 76801 Saint Etienne du Rouvray cedex, France

RÉSUMÉ

This article reports an experimental investigation on the disintegration of cylindrical jets through a study of the stability curve. We are interested mainly in the behavior of low-velocity jets in order to understand the development of the critical point, the first maximum on the stability curve. The experimental results obtained for a jet of water under varying ambient pressures show that the critical point is not due to the effect of the aerodynamic forces for our working conditions. A detailed comparison with other experimental measurements and with predictions deduced from models available in the literature is carried out and suggests a classification of the jet behavior according to the ratio ρ*GG, where the critical density ρ*G is a new jet parameter that is a function of the Ohnesorge number and of the length-to-diameter nozzle ratio. A new modification of Weber's equation is suggested here in order to predict the critical velocity in any situation. The new model, tested for the experimental situations studied in the present article, calculate critical velocity in good agreement with the experimental measurements.


Articles with similar content:

The Break-up Length of Laminar Cylindrical Liquid Jets. Modification of Weber's Theory
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
S. Leroux, M. Ledoux, Christophe Dumouchel
EXPERIMENTAL INVESTIGATION OF THE DROP SIZE DISTRIBUTION OF SPRAYS PRODUCED BY A LOWVELOCITY NEWTONIAN CYLINDRICAL LIQUID JET
Atomization and Sprays, Vol.11, 2001, issue 3
Helene Malot, Christophe Dumouchel
ATOMIZATION BEHAVIOR OF FUEL CONTAINING DISSOLVED GAS
Atomization and Sprays, Vol.4, 1994, issue 3
Tamotsu Nagasaka, Siichi Shiga, Zhen Huang, Hisao Nakamura, Shao Yiming, Takao Karasawa
IMPACT WAVE-BASED MODEL OF IMPINGING JET ATOMIZATION
Atomization and Sprays, Vol.16, 2006, issue 7
Robert J. Santoro, Harry M. Ryan, III, William E. Anderson
CRITICAL VELOCITIES AND DROPLET SIZES FOR ENTRAINED SPRAYS FROM MESHED INTERFACE BY CONVECTIVE AIR STREAM
Transport Phenomena in Thermal Engineering. Volume 2, Vol.0, 1993, issue
Kenneth D. Kihm, B. H. Kim, G. P. Peterson