Abonnement à la biblothèque: Guest
Atomization and Sprays

Publication de 12  numéros par an

ISSN Imprimer: 1044-5110

ISSN En ligne: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

GROWTH OF LONGITUDINAL WAVES IN PLANE LIQUID SHEETS HAVING LATERAL WAVE MODES WHEN EXPOSED TO TWO GAS STREAMS OF UNEQUAL VELOCITIES

Volume 15, Numéro 2, 2005, pp. 181-200
DOI: 10.1615/AtomizSpr.v15.i2.50
Get accessGet access

RÉSUMÉ

The growth of waves along the direction of motion of thin viscous liquid sheets is investigated when lateral waves are additionally present. Gas streams are considered to move at different relative velocities over the gas—liquid interfaces. A dispersion relation is derived using spatial growth of the longitudinal waves. Para-antisymmetric waves are shown to have significant growth rates in the presence of lateral wave motion at larger values of Weber number, gas-to-liquid density ratio, and relative velocity ratio. The presence of lateral wave motion does not affect the growth rates when gas Weber number exceeds 10.
The droplet sizes, formed from the disintegration of the liquid sheets, are also determined from the longitudinal and lateral wave numbers. The distribution of droplet sizes is modeled and it is shown that the droplet sizes, formed in the presence of lateral wave motion, are restricted over a smaller range of diameters as compared to the wider distribution obtained in the absence of the lateral wave modes.

CITÉ PAR
  1. Tharakan T John, Ramamurthi K, Influence of liquid and gas compressibility on the growth of waves in thin liquid sheets, Fluid Dynamics Research, 42, 3, 2010. Crossref

  2. Tharakan T. John, Mukhopadhyay Achintya, Datta Amitava, Jog Milind A., Trends in Comprehensive Modeling of Spray Formation, International Journal of Spray and Combustion Dynamics, 5, 2, 2013. Crossref

  3. Dasgupta Debayan, Nath Sujit, Mukhopadhyay Achintya, Linear and Non-linear Analysis of Breakup of Liquid Sheets: a Review, Journal of the Indian Institute of Science, 99, 1, 2019. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain