Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.262 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2011003709
pages 483-501

PREDICTION OF SIZE AND VELOCITY DISTRIBUTIONS IN SPRAYS FORMED BY THE BREAKUP OF PLANAR LIQUID SHEETS USING MAXIMUM ENTROPY FORMALISM

Sujit Nath
Mechanical Engineering Department, Jadavpur University ,Kolkata 700032, India
Amitava Datta
Power Engineering Department, Jadavpur University, Salt Lake Campus, Kolkata 700098, India
Achintya Mukhopadhyay
Department of Mechanical Engineering Jadavpur University Kolkata, West Bengal, 700032, India
Swarnendu Sen
Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
T. John Tharakan
Liquid Propulsions Systems Centre, Indian Space Research Organization,Valiamala, Thiruvananthapuram 695547, India

RÉSUMÉ

A predictive model for size and velocity distributions of droplets in a liquid spray from the disintegration of a planar sheet has been proposed, based on the maximum entropy formulation (MEF) principle. The conservation laws of mass, momentum, and energy over the breakup region serve as the constraint conditions in the MEF model. The liquid sheet breakup length, evaluated from the nonlinear stability analysis of planar liquid sheet, is used to evaluate the momentum and energy exchange terms in the conservation equations. The mass mean diameter is calculated from the breakup of cylindrical ligaments using the deformed interface profile at the time of breakup. The simulated results of the droplet size distribution are compared with the results published in the literature and reasonable agreement is observed at different conditions. The investigation has brought out the effects of gas-to-liquid velocity ratio, gas-to-liquid density ratio, and Weber number on the droplet size and velocity distributions in the liquid spray.


Articles with similar content:

MODELING THE INITIAL DROPLET SIZE DISTRIBUTION IN SPRAYS BASED ON THE MAXIMIZATION OF ENTROPY GENERATION
Atomization and Sprays, Vol.15, 2005, issue 3
Huijuan Fu, Xianguo Li, Meishen Li
DIRECT SIMULATIONS OF LIQUID SHEET BREAKUP IN PLANAR GAS BLAST ATOMIZATION
Atomization and Sprays, Vol.27, 2017, issue 2
Rajesh Reddy , Raja Banerjee
LINEAR STABILITY ANALYSIS OF AN ELECTRIFIED VISCOELASTIC LIQUID SHEET IN A VISCOUS GAS MEDIUM
Atomization and Sprays, Vol.24, 2014, issue 2
Lei Li, Zhi-ying Chen, Run-ze Duan
Development of a Diesel Spray Atomization Model Considering Nozzle Flow Characteristics
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Kang Y. Huh, Eunju Lee, Jaye Koo
TWO-DIMENSIONAL TEMPORAL INSTABILITY OF A VISCOELASTIC LIQUID SHEET OF A PARABOLIC VELOCITY PROFILE
Atomization and Sprays, Vol.27, 2017, issue 5
Zi-yue Wang, Zhi-ying Chen, Lian-sheng Liu, Runze DUAN