Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.262 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v9.i2.10
pages 111-132

SCALING OF SPRAY PENETRATION WITH EVAPORATION

Yuepeng Wan
Department of Materials Science and Engineering, State University of New York at Stony Brook, New York, USA
Norbert Peters
Department of Combustion Technology RWTH Aachen University Templergraben 64, 52056 Aachen, Germany

RÉSUMÉ

The penetration of fuel spray under diesel engine conditions was calculated by solving the cross-sectionally averaged equations for unsteady two-phase flow. The effects of a variety of processes in the spray, e.g., air entrainment and droplet evaporation, on spray penetration are analyzed through the corresponding nondimensional parameters. The integrated two-phase flow equation system can further be simplified with the approximation of equal gas and liquid velocities, which are reached after a short atomization region for a complete spray. A closed-form solution for the penetration length was derived from the system of integrated equations using the quasi-steady-state assumption. This solution is compared with the well-known Wakuri correlation and the Hiroyasu correlation. The expression of the spray tip and droplet penetration lengths are also deduced for nonconstant injection velocity. The effects of ambient air density and droplet evaporation rate on spray penetration were investigated numerically, and the numerical results agree very well with many experiments from the literature.


Articles with similar content:

Two-phase flow and heat transfer
A NUMERICAL MODEL FOR 3D TRANSIENT EVAPORATION PROCESSES BASED ON THE VOLUME-OF-FLUID METHOD

ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
Matthias Hase
Development of a Diesel Spray Atomization Model Considering Nozzle Flow Characteristics
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Kang Y. Huh, Eunju Lee, Jaye Koo
LINKING NOZZLE FLOW WITH SPRAY CHARACTERISTICS IN A DIESEL FUEL INJECTION SYSTEM
Atomization and Sprays, Vol.8, 1998, issue 3
Manolis Gavaises, C. Arcoumanis
REAL GAS EFFECTS IN MIXING-LIMITED DIESEL SPRAY VAPORIZATION MODELS
Atomization and Sprays, Vol.20, 2010, issue 7
Carlo C. M. Luijten, Chris Kurvers
THE CHARACTERISTICS OF POSTIMPINGEMENT DIESEL SPRAY, PART I: PENETRATION AND VOLUME
Atomization and Sprays, Vol.12, 2002, issue 4
Masataka Arai, Kyungnam Ko