Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Atomization and Sprays
Facteur d'impact: 1.262 Facteur d'impact sur 5 ans: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Imprimer: 1044-5110
ISSN En ligne: 1936-2684

Volumes:
Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i1.50
pages 57-70

EXPERIMENTAL INVESTIGATION OF THE CORRELATION BETWEEN NOZZLE FLOW AND SPRAY USING LASER DOPPLER VELOCIMETER, PHASE DOPPLER SYSTEM, HIGH-SPEED PHOTOGRAPHY, AND X-RAY RADIOGRAPHY

Benjamin Balewski
Robert Bosch GmbH
Barbara Heine
Robert Bosch GmbH, Corporate Research, Postfach 10 60 50, D-70049 Stuttgart
Cameron Tropea
Technische Universität Darmstadt, Institute of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, International Research Training Group Darmstadt-Tokyo on Mathematical Fluid Dynamics, Germany

RÉSUMÉ

This paper presents experimental investigations of the nozzle flow and spray in a pressure atomizer. Different inlays in the nozzle were used to modify the nozzle flow. To isolate the influence of turbulence and cross-flow velocity on the primary atomization, an operating point without cavitation in the nozzle was selected. This was monitored using a high-speed camera in combination with a long-distance microscope. Inside the transparent nozzle, a two-velocity component laser Doppler velocimeter (LDV) was used to measure velocity and turbulence profiles at the nozzle exit. For the characterization of the spray, different measurement techniques have been applied: high-speed photography to determine the spray angle, a phase Doppler system (PDA) for the velocity distribution and droplet sizes in the spray, and X-ray radiography for the spray angle and to evaluate the liquid density distribution. Finally, the correlations between the flow characteristics in the nozzle and the spray characteristics are discussed using the experimental results.


Articles with similar content:

CHARACTERIZATION OF THE NEAR-INJECTOR REGION OF COAXIAL JETS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
P. Gicquel, G. Monote, Francis Roger, D. Le Visage, Jean-Louis Carreau
COMPARATIVE STUDY OF TWIN-FLUID ATOMIZATION USING SONIC OR SUPERSONIC GAS JETS
Atomization and Sprays, Vol.6, 1996, issue 3
Joon Sik Lee, Byung Kyu Park, Kenneth D. Kihm
SPRAY STRUCTURE AND CHARACTERISTICS OF HIGH-PRESSURE GASOLINE INJECTORS FOR DIRECT-INJECTION ENGINE APPLICATIONS
Atomization and Sprays, Vol.11, 2001, issue 1
Chang Sik Lee, Dae Sik Kim, Mun Soo Chon
THE INFLUENCE OF ECCENTRICITY ON THE PERFORMANCE OF A COAXIAL PREFILMING AIR-ASSIST ATOMIZER
Atomization and Sprays, Vol.11, 2001, issue 1
Thomas Richter, Andreas Glathe, Gunter Wozniak
COMPARISON AND CROSS-VALIDATION OF OPTICAL TECHNIQUES IN DIFFERENT SWIRL SPRAY REGIMES
Atomization and Sprays, Vol.23, 2013, issue 8
Ranganathan Kumar, Joshua Lee, Saptarshi Basu