Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
International Journal of Energy for a Clean Environment
SJR: 0.195 SNIP: 0.435 CiteScore™: 0.74

ISSN Imprimer: 2150-3621
ISSN En ligne: 2150-363X

International Journal of Energy for a Clean Environment

Précédemment connu sous le nom Clean Air: International Journal on Energy for a Clean Environment

DOI: 10.1615/InterJEnerCleanEnv.2018020996
pages 1-17

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HEAT TRANSFER AND PRESSURE DROP ON PERFORMANCE OF A FLAT TUBE BY USING WATER-BASED Al2O3 NANOFLUIDS

Gurpreet Singh
Department of Chemical Engineering, Thapar University, Patiala-147004, Punjab, India
Gangacharyulu Dasaroju
Thapar Institute of Engineering and Technology, Patiala
Vijaya Kumar Bulasara
Department of Chemical Engineering, Thapar University, Patiala-147004, Punjab, India

RÉSUMÉ

The aim of the present study was to experimentally investigate the heat transfer and pressure drop characteristics in a vertical flat tube with nanofluids. Aluminum oxide nanoparticles with average size of 20 nm were used to prepare the nanofluids of different volume fractions (0.1%, 0.2%, 0.3%, and 0.4%) without the use of any surfactant. The thermophysical properties, i.e., thermal conductivity, viscosity, and density over a wide range of temperatures (30°C–65°C) were measured experimentally. The thermal conductivity, viscosity, and density increased with the concentration of nanofluids. The heat transfer coefficient and pressure drop were estimated for different inlet temperatures of nanofluids (45°C–85°C) for the Reynolds number range 10,000–30,000, while the air velocity was kept constant at 0.55 m/s. During the experimentation, it was observed that the heat transfer coefficient and pressure drop increased with the Reynolds number and particle volume fraction. It was also observed that the heat transfer coefficient increased with the fluid inlet temperature because the viscosity and density of the fluid decreased at higher temperatures, while the pressure drop decreases slightly with increase in the fluid inlet temperatures. The heat transfer coefficient increased when the particle volume fraction was increased from 0.1% to 0.4% and maximum heat transfer coefficient was enhanced by 14% with the use of 0.4% v/v concentration of nanofluids at Reynolds number 30,000 and inlet temperature 85°C. The pressure drop ratio was 1.4 for 0.4% v/v concentrations of Al2O3 nanoparticles.


Articles with similar content:

EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER AND PRESSURE DROP PERFORMANCE OF FLAT TUBE BY USING WATER BASED Al2O3 NANOFLUIDS
Second Thermal and Fluids Engineering Conference, Vol.38, 2017, issue
Vijaya Kumar Bulasara, Gangacharyulu Dasaroju, Gurpreet Singh
ENHANCEMENT OF HEAT TRANSFER PERFORMANCE OF FLAT VERTICAL TUBE USING COPPER OXIDE/WATER NANOFLUIDS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Gurpreet Singh Sokhal, Dasaroju Gangacharyulu, Vijaya Kumar Bulasara
PERFORMANCE OF AN AUTOMOTIVE CAR RADIATOR OPERATED WITH NANOFLUID-BASED COOLANT
Heat Transfer Research, Vol.49, 2018, issue 16
Pijakala Dinesha, Shiva Kumar, Ashutosh Gaggad, Kshitij Mehrotra
EXPERIMENTAL INVESTIGATIONS ON THE COOLING PERFORMANCE OF MICROCHANNELS USING ALUMINA NANOFLUIDS WITH DIFFERENT BASE FLUIDS
Journal of Enhanced Heat Transfer, Vol.25, 2018, issue 3
Dasaroju Gangacharyulu, Harkirat Sandhu, Mani Kanwar Singh
Convective Heat Transfer in a Wavy Channel Utilizing Nanofluids
Journal of Enhanced Heat Transfer, Vol.14, 2007, issue 4
Javad Rostami