Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Eukaryotic Gene Expression
Facteur d'impact: 2.156 Facteur d'impact sur 5 ans: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Imprimer: 1045-4403
ISSN En ligne: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukarGeneExpr.v7.i1-2.100
pages 179-193

Gene Regulation Associated with Apoptosis

Birgit M. Jehn
University of Massachusetts at Amherst, Department of Veterinary and Animal Sciences and Program of Molecular Biology, Paige Laboratory, Amherst, Massachusetts 01003.
Barbara A. Osborne
University of Massachusetts at Amherst, Department of Veterinary and Animal Sciences and Program of Molecular Biology, Paige Laboratory, Amherst, Massachusetts 01003.

RÉSUMÉ

Apoptosis, one of the best-studied forms of programmed cell death processes, plays an important role during the development and life-cycle of most multicellular organisms. The mechanisms underlying the initiation and manifestation of apoptotic cell death are the focus of the most recent cell death research. Generally, it is believed that cells are eliminated via a highly ordered and controlled program. This program might consist of the successive activation of unique apoptosis-specific genes, which are solely involved in the regulation of the programmed cell death. However, more and more evidence is accumulating that novel genes are not activated or induced during apoptosis, but rather many well-known genes previously described for their roles in processes such as proliferation and differentiation and belonging, for example, to the protein families of immediate-early genes and transcription factors become activated. The death-specific feature is achieved thereby by the extent, combination, and specific timing of gene expression. The involvement of the three different transcription factors glucocorticoid receptor (GR), nur77, and activator protein 1 (AP-1) in such a scenario is the focus of this review.


Articles with similar content:

Extracellular Vesicles as Potential Mediators of Epigenetic Reprogramming
Forum on Immunopathological Diseases and Therapeutics, Vol.6, 2015, issue 3-4
Anna Lewandowska Ronnegren
Histone Deacetylase Co-Repressor Complex Control of Runx2 and Bone Formation
Critical Reviews™ in Eukaryotic Gene Expression, Vol.17, 2007, issue 3
Aswathy K. Nair, Eric D. Jensen, Jennifer J. Westendorf
Cell Nucleus in Context
Critical Reviews™ in Eukaryotic Gene Expression, Vol.10, 2000, issue 1
Sophie Lelievre, Mina J. Bisseil, Philippe Pujuguet
Oncogenic Potential of Yin Yang 1 Mediated Through Control of Imprinted Genes
Critical Reviews™ in Oncogenesis, Vol.16, 2011, issue 3-4
Michelle M. Thiaville , Joomyeong Kim
Myb-lnduced Transformation
Critical Reviews™ in Oncogenesis, Vol.7, 1996, issue 3-4
Linda Wolff