Abonnement à la biblothèque: Guest
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections
Critical Reviews™ in Eukaryotic Gene Expression
Facteur d'impact: 1.841 Facteur d'impact sur 5 ans: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN Imprimer: 1045-4403
ISSN En ligne: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2017019558
pages 277-287

Involvement of Different Genes Expressions during Immunological and Inflammatory Responses in Vitiligo

Chandra Kant Sharma
Institute of Agricultural Science, SAGE University, Indore, India-452020
Monika Sharma
Department of Bioscience and Biotechnology, Banasthali Vidyapith (Women's University), Rajasthan, India
Kanika Prasad
Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India; Birla Institute of Technology and Science, Pilani, Rajasthan, India


Vitiligo is a condition of the skin distinguished by hypo-pigmentation. Etiology of this disorder is unknown, and several theories and mechanisms have been hypothesized. The inflammatory response in vitiligo is thought to be mediated by polymorphism in genes such as FOXP3, ACE, APE, GSTP1, TLR, SOD, CTLA-4, TAP/LMP gene cluster, etc. Theories including reactive oxygen species model, Nrf2–antioxidant response element (ARE) pathway, WNT pathway, tyrosinase activity, biochemical, molecular, and cellular alterations have been hypothesized to explain vitiligo pathogenesis. Melanosomal proteins are involved in antigen processing. The antigens are expressed to the T-cells in the form of peptides with HLA class II molecules. T-cells are activated in response to the discharge of co-stimulatory molecules such as LFA-3 as well as ICAM-1. An adaptive immune response is thus elicited, and the melanocytes eventually die or start malfunctioning and the skin undergoes hypo-pigmentation. IFN-γ is known to be a melanocyte inhibitor of paracrine origin; it is clearly involved in the early onset of symptoms of vitiligo disease. The surge in the IFN-γ levels mediates augmented expression of ICAM-1 molecule on the melanocytes, thereby establishing cytokine-mediated destruction of melanocytes. Mainly, mediators released by melanocytes and the functionality of keratinocytes decrease the disease activity. Such mediators include ET-1 as well as SCF, increase the pigmentation particularly when a patient is given with the UVB treatment. By scavenging ROS and screening UV radiation, melanin limits the damage caused to the cutaneous cells by UV radiation. Various immune responses play important roles in vitiligo.

Articles with similar content:

The Critical Role of the Antimicrobial Peptide LL-37/ CRAMP in Protection of Colon Microbiota Balance, Mucosal Homeostasis, Anti-Inflammatory Responses, and Resistance to Carcinogenesis
Critical Reviews™ in Immunology, Vol.39, 2019, issue 2
Weiwei Liang, Wanghua Gong, Keqiang Chen, Ji Ming Wang, Teizo Yoshimura, Meihua Zhang
Ras Denitrosylation in Human Lung Cancer
Forum on Immunopathological Diseases and Therapeutics, Vol.3, 2012, issue 2
Benjamin Gaston, Nadzeya Marozkina
How Can the Innate Immune System Influence Autoimmunity in Type 1 Diabetes and Other Autoimmune Disorders?
Critical Reviews™ in Immunology, Vol.25, 2005, issue 3
L. Wen, F. S. Wong
Dimethyl Fumarate Modulation of Immune and Antioxidant Responses: Application to HIV Therapy
Critical Reviews™ in Immunology, Vol.33, 2013, issue 4
Alexander J. Gill , Dennis L. Kolson
Pathogenesis of HIV-1 Associated Neurodegeneration
Critical Reviews™ in Neurobiology, Vol.10, 1996, issue 1
Lennart Mucke, Eliezer Masliah, Nianfeng Ge